@ SALTSTACK

Salt Documentation
Release 2017.7.8

SaltStack, Inc.

Feb 18, 2019






Contents

1

Introduction to Salt 1
1.1 The 30 second SUMMATIY . . . . . . v v v vt it ettt e e et e e e e e e e 1
1.2 SImplicity . . . . . o e e 1
1.3 Parallel execution . . . . . . . . . e 1
1.4  Builds on proven technology . . . . . . . . . . 2
1.5 Python clientinterface . . . . . . . . . . . 2
1.6 Fast, flexible, scalable . . . . . . . . . 2
1.7 0pen . . . . e e 2
1.8 SaltCommunity . . . . . . o .o e e 2
1.9 Mailing List . . . . . . o o e e 2
110 IRC .. e e e 3
1.11 Followon Github . . . . . . . . . . . e 3
112 Blogs . . o o e e 3
1.13 Example Salt States . . . . . . . . L 3
1.14 Followonohloh . . . . . . o 3
1.15 Other community links . . . . . . .. .. 4
1.16 HacktheSource. . . . . . . . . . 4
Installation 5
21 QuickInstall. . . . . . . . e 5
2.2 Platform-specific Installation Instructions . . . . . . .. ... ... L L 5
2.3 Initial Configuration . . . . . . . . . L 28
24 Additional Installation Guides . . . . . . . .. L e 32
25 Dependencies . . . . . . ..o e e e 47
2.6 Optional Dependencies . . . . . . . . . . . i e e 48
2.7 Upgrading Salt . . . . . . . e 48
2.8 Building Packages using Salt Pack . . . . . . .. . .. L 48
Configuring Salt 51
3.1  Configuring the Salt Master . . . . . . . . . . . . e 51
3.2 Configuring the Salt Minion . . . . . . . . ... . 115
3.3 Configuring the Salt Proxy Minion . . . . . . . ... .. i 152
34 Configuration file examples . . . . . . .. .. L 154
3.5  Minion Blackout Configuration . . . . . .. .. ... . L e 202
3.6  AccessControl System . . . . . . . .. 203
3.7 JobManagement . . . . .. ... e e 213
3.8 Managingthe JobCache . . . . . . . . .. 219
3.9  Storing Job Results in an External System . . . . .. . . ... . L L 220




10

11

310 Logging . . . . o o e e e
3.11 External Logging Handlers. . . . . . . . . . . . e
3.12 SaltFile Server . . . . . . . e e
3.13 Git Fileserver Backend Walkthrough . . . . .. ... ... . . . . L L
3.14 MinionFS Backend Walkthrough . . . . .. .. ... .. . L
3.15 Salt Package Manager . . . . . . . . . . . e e
3.16 Storing Data in Other Databases . . . . . . . . . .. . . .. i
3.17 Running the Salt Master/Minion as an Unprivileged User . . . . . . . .. .. ... ... ... .....
3.18 UsingcronwithSalt . . . . . ... . .
3.19 Use cron to initiate a highstate . . . . . . . .. ... . L
3.20 Hardening Salt . . . . . . . . L
3.21 Security disclosure policy . . . . . ...
3.22 Salt Transport . . . . . . L e
3.23 Master Tops System . . . . . . ..
3.24 Returners . . . . . . . ...
3.25 Renderers . . . . . . .. e e
Using Salt

41 Grais . . . . . oo
4.2  Storing Static Datainthe Pillar . . . . . . . . . .. L
43  Targeting MInions . . . . . . . . o o i i i i e e e e
44 TheSalt Mine . . . . . . . . .
45 Runmers . ... .. .. e
4.6 SaltEngines . . . . . . . . e e e e
4.7  Understanding YAML . . . . . . e e
4.8 Understanding Jinja . . . . . . . .. e
4.9 TutorialsIndex . . . . . . . L
4.10 Troubleshooting . . . . . . . . . . e
4.11 Frequently Asked Questions . . . . . . . . . . e e
4.12 Salt Best Practices. . . . . . . . o i i e e
Remote Execution

5.1 Running Commands on Salt Minions . . . . . . . . . .. . . e
5.2 Writing Execution Modules . . . . . . .. L e
Configuration Management

6.1  State System Reference . . . . . . . . . . . L
Utility Modules - Code Reuse in Custom Modules

Events & Reactor

8.1 EventSystem . . . . . . . . e
8.2 Beacons . .. .. e
8.3 Reactor System . . . . . . . .
Orchestration

9.1 Orchestrate Runner . . . . . . . . ... . e
Solaris

10.1 Solaris-specific Behaviour . . . . . . ...
Salt SSH

11.1  Getting Started . . . . . . . L
112 Salt SSHRoOSter . . . . . . oo e
11.3 Deploy sshkey forsalt-ssh. . . . . . .. ... ..

363
363
368
383
392
395
397
397
399
421
519
533
540

549
549
551

561
562

623

627
627
634
639

651
651

657
657




11.4
11.5
11.6
11.7
11.8
11.9
11.10

Calling Salt SSH . . . . . . . L L e
States ViaSalt SSH . . . . . . .. o
Targeting with Salt SSH . . . . . . . .. .
Configuring Salt SSH . . . . . . . . o e
Running Salt SSH as non-root user . . . . . . . .. .. ittt e
Define CLI Options with Saltfile . . . . . . . . . .. .. .
Debugging salt-ssh . . . . . . . . e

12 Thorium Complex Reactor

12.1
12.2
12.3
12.4

Starting the Thorium Engine . . . . . . . . . . . .. L e
Thorium Modules . . . . . . . .. e e
Writing Thorium Formulas . . . . . . . . 0oL o
The Thorium Register . . . . . . . . . . . . e

13 Salt Cloud

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13

Configuration . . . . . . . . . e e
Configuration Inheritance . . . . . . . . ... L
QuickStart . . . . . . e
Using Salt Cloud . . . . . . . . .
Core Configuration . . . . . . . . ot it
Windows Configuration . . . . . . . . .. .
Cloud Provider Specifics . . . . . . . . ..
Miscellaneous Options . . . . . . . . . oo i e e e e e
Troubleshooting Steps . . . . . . . . . ..
Extending Salt Cloud . . . . . . . . . .
Using Salt Cloud from Salt . . . . . . . .. ..
Feature Comparison . . . . . . . .. . .. e
Tutorials . . . . . . e

14 Salt Proxy Minion

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

New in 2017.7.0 . . . . . o o e e e e e e e e e e e e e
New in 2016.11.0 . . . . . . o . e e e e e e e e e e e e e
New in 2016.3 . . . . . . o e e e e e e e e e e e e e e e e e e
New in 2015.8.2 . . . . . . . o e e e e e e e e e e e e e e
New in 2015.8 . . . . . . o o e e e e e e e e e e e e e e
Getting Started . . . . . . . L
The __proxyenabled__ directive . . . . . . . .. .. . L e
SSH Proxymodules . . . . . . . . e

15 Salt Virt

15.1
15.2
15.3
15.4

Salt Virt Tutorial . . . . . . . . . .
The Salt Virt Runner . . . . . . . . . . . . e
BasedonLive State Data . . . . . . . . . . . ... e e
Deploy from Network or Disk . . . . . . . . . o 0o

16 Command Line Reference

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

salt-call . . . .. e e
salt . . e
salt-cloud . . . . .. e e e
salt-Cp . . . e
salt-extend . . . . . . L L e
salt-Key . . . e
salt-master. . . . . . . L e e e
salt-MINION . . . . . o o e e e e e e
SAll-PrOXY .« . o i e e

665
665
665
666
667

671
671
671
672
672
682
692
695
830
836
838
848
852
855

863
863
863
864
865
865
865
873
875

883
883
883
884
884

887
887
890
893
893
895
896
900
901
902




17

18

19

20

21

22

23

24

16.10 salt-run . . . . . e e e 903
16.11 salt-ssh. . . . . . e 904
16.12 salt-syndic . . . . . . L e 908
16.13 salt-unity . . . .. .. 909
16.14 salt-api . . . . . L . o e e 909
16.15 SPIM . . L L L e e 911
Pillars 913
Master Tops 915
Salt Module Reference 917
19.1 authmodules . . . . . . . e e 917
19.2 beaconmodules . . . . . .. e e 924
19.3 cachemodules . . . . . . ... e 937
19.4 cloudmodules . . . . . . .. 940
195 enginemodules . . . . . L. 1046
19.6 executorsmodules . . . . .. .. L e e e 1060
19.7 fileserver modules . . . . . . . L L e 1062
19.8 grainsmodules . . . ... L 1065
19.9 executionmodules . . . . .. .. L 1073
19.10 netapimodules . . . . . L L e 2413
19.11 outputmodules . . . . . . L e 2446
19.12 pillarmodules . . . . . . L e 2455
19.13 proxy modules . . . ... L 2511
19.14 queuemodules . . .. L 2536
19.15 rostermodules . . . . .. L L e 2538
19.16 runner modules . . . . . . L. L e e e 2543
19.17 sdbmodules . . . . . . e 2606
19.18 serializer modules. . . . . . . . L e e 2616
19.19 state modules . . . . . .. L e 2619
19.20 thorium modules . . . . . . . . . L 3139
19.21 master topsmodules . . . . . L. 3147
19.22 wheel modules . . . . . . . . .. e 3150
APIs 3157
20.1 Pythonclient APL . . . . . . . . e 3157
20.2 netapimodules . . . . . .. e 3167
Architecture 3171
21.1 High Availability Featuresin Salt . . . . . . . . . . ... . . 3171
21.2 SaltSyndic. . . . . .. 3172
Minion Data Cache 3177
22.1 Pluggable Data Cache . . . . . . . . . . . . e 3177
22.2 Configuring the Minion Data Cache . . . . .. .. ... .. . . .. . .. .. . 3177
Windows 3179
23.1 Windows Software Repository . . . . . . . . .. . e 3179
23.2  Windows-specific Behaviour . . . . . .. ... . L 3191
Developing Salt 3193
24.1 OVEIVIEW . . o o vt o e e e e e e e e e e e e e e e e e e e e e e e 3193
24.2 Salt Client . . . . . . . 3193
243  Salt Master . . . . . . . .. e 3193




244 Salt Minion . . . . . . .. e 3195
245 A Note on ClearFuncs vs. AESFuncs . . . . . . . .. . o 3196
24.6 Contributing . . . . . . . e 3197
247 Deprecating Code . . . . . . . ... 3204
24.8 Installing Salt for development . . . . . ... . ... L L 3205
24.9 GitHub Labels and Milestones . . . . . . . . .. . e 3209
24.10 Logging Internals . . . . . . . . . L 3214
24.11 Package Providers . . . . . . . . e 3214
24.12 PullRequests . . . . . . . . L 3218
24.13 Reporting Bugs . . . . . . . . 3220
24.14 Salt Topology . . . . . . . e 3220
24.15 Translating Documentation . . . . . . . . . .. . L 3221
24.16 Developing Salt Tutorial . . . . . . . . . . . e 3222
24.17 Modular Systems . . . . . . L 3225
24.18 Salt Extend . . . . . . . L. e 3238
24.19 Salt's Test Suite . . . . . . . . . e e 3240
24.20 Integration Tests . . . . . . . . oL e 3247
24.21 Writing Unit Tests . . . . . . . o e e e e e 3257
24.22 raet . ..o e e e e e 3265
24.23 SaltStack GitPolicy . . . . . . . o e 3269
24.24 Salt Conventions . . . . . . . . . . . . e e 3270
24.25 Saltcode and internals . . . . . . . L. 3305
24.26 Salt Community Projects . . . . . . . . . L 3312
25 Release Notes 3315
25.1 Latest Branch Release . . . . . . . . . . . . . e 3315
25.2 PreviousReleases . . . . . . . . L e 3315
26 Venafi Tools for Salt 4351
26.1 Introduction . . . . . . . . .. e 4351
26.2 Example Usage . . . . . . . i e 4351
263 Runner Functions . . . . . . . . . . 4352
27 Glossary 4355
Salt Module Index 4359
Index 4371







CHAPTER 1

Introduction to Salt

We’re not just talking about NaCl.

1.1 The 30 second summary

Salt is:

- a configuration management system, capable of maintaining remote nodes in defined states (for example,
ensuring that specific packages are installed and specific services are running)

« a distributed remote execution system used to execute commands and query data on remote nodes, either
individually or by arbitrary selection criteria

It was developed in order to bring the best solutions found in the world of remote execution together and make them
better, faster, and more malleable. Salt accomplishes this through its ability to handle large loads of information, and
not just dozens but hundreds and even thousands of individual servers quickly through a simple and manageable
interface.

1.2 Simplicity

Providing versatility between massive scale deployments and smaller systems may seem daunting, but Salt is very
simple to set up and maintain, regardless of the size of the project. The architecture of Salt is designed to work with
any number of servers, from a handful of local network systems to international deployments across different data
centers. The topology is a simple server/client model with the needed functionality built into a single set of daemons.
While the default configuration will work with little to no modification, Salt can be fine tuned to meet specific needs.

1.3 Parallel execution

The core functions of Salt:
« enable commands to remote systems to be called in parallel rather than serially
« use a secure and encrypted protocol
« use the smallest and fastest network payloads possible
« provide a simple programming interface

Salt also introduces more granular controls to the realm of remote execution, allowing systems to be targeted not
just by hostname, but also by system properties.




Salt Documentation, Release 2017.7.8

1.4 Builds on proven technology

Salt takes advantage of a number of technologies and techniques. The networking layer is built with the excellent
ZeroMQ networking library, so the Salt daemon includes a viable and transparent AMQ broker. Salt uses public
keys for authentication with the master daemon, then uses faster AES encryption for payload communication; au-
thentication and encryption are integral to Salt. Salt takes advantage of communication via msgpack, enabling fast
and light network traffic.

1.5 Python client interface

In order to allow for simple expansion, Salt execution routines can be written as plain Python modules. The data
collected from Salt executions can be sent back to the master server, or to any arbitrary program. Salt can be called
from a simple Python API, or from the command line, so that Salt can be used to execute one-off commands as well
as operate as an integral part of a larger application.

1.6 Fast, flexible, scalable

The result is a system that can execute commands at high speed on target server groups ranging from one to very
many servers. Salt is very fast, easy to set up, amazingly malleable and provides a single remote execution architec-
ture that can manage the diverse requirements of any number of servers. The Salt infrastructure brings together the
best of the remote execution world, amplifies its capabilities and expands its range, resulting in a system that is as
versatile as it is practical, suitable for any network.

1.7 Open

Salt is developed under the Apache 2.0 license, and can be used for open and proprietary projects. Please submit
your expansions back to the Salt project so that we can all benefit together as Salt grows. Please feel free to sprinkle
Salt around your systems and let the deliciousness come forth.

1.8 Salt Community

Join the Salt!
There are many ways to participate in and communicate with the Salt community.

Salt has an active IRC channel and a mailing list.

1.9 Mailing List

Join the salt-users mailing list. It is the best place to ask questions about Salt and see whats going on with Salt
development! The Salt mailing list is hosted by Google Groups. It is open to new members.

2 Chapter 1. Introduction to Salt


http://zeromq.org/
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://msgpack.org/
http://www.apache.org/licenses/LICENSE-2.0.html
https://groups.google.com/forum/#!forum/salt-users

Salt Documentation, Release 2017.7.8

1.10 IRC

The #salt IRC channel is hosted on the popular Freenode network. You can use the Freenode webchat client right
from your browser.

Logs of the IRC channel activity are being collected courtesy of Moritz Lenz.

If you wish to discuss the development of Salt itself join us in #salt-devel.

1.11 Follow on Github

The Salt code is developed via Github. Follow Salt for constant updates on what is happening in Salt development:

https://github.com/saltstack/salt

1.12 Blogs

SaltStack Inc. keeps a blog with recent news and advancements:

http://www.saltstack.com/blog/

1.13 Example Salt States

The official salt-states repository is: https://github.com/saltstack/salt-states
A few examples of salt states from the community:

« https://github.com/blast-hardcheese/blast-salt-states

https://github.com/kevingranade/kevingranade-salt-state

https://github.com/uggedal/states

https://github.com/mattmcclean/salt-openstack/tree/master/salt
« https://github.com/rentalita/ubuntu-setup/

» https://github.com/brutasse/states

https://github.com/bclermont/states

https://github.com/pcrews/salt-data

1.14 Follow on ohloh

https://www.ohloh.net/p/salt

1.10. IRC 3


http://freenode.net/irc_servers.shtml
http://webchat.freenode.net/?channels=salt&uio=Mj10cnVlJjk9dHJ1ZSYxMD10cnVl83
http://irclog.perlgeek.de/salt/
https://github.com/saltstack/salt
http://www.saltstack.com/blog/
http://www.saltstack.com/blog/
https://github.com/saltstack/salt-states
https://github.com/blast-hardcheese/blast-salt-states
https://github.com/kevingranade/kevingranade-salt-state
https://github.com/uggedal/states
https://github.com/mattmcclean/salt-openstack/tree/master/salt
https://github.com/rentalita/ubuntu-setup/
https://github.com/brutasse/states
https://github.com/bclermont/states
https://github.com/pcrews/salt-data
https://www.ohloh.net/p/salt

Salt Documentation, Release 2017.7.8

1.15 Other community links

Salt Stack Inc.
Subreddit

« Google+
« YouTube
« Facebook

o Twitter

Wikipedia page

1.16 Hack the Source

If you want to get involved with the development of source code or the documentation efforts, please review the
contributing documentation!

4 Chapter 1. Introduction to Salt


http://www.saltstack.com
http://www.reddit.com/r/saltstack
https://plus.google.com/114449193225626631691/posts
http://www.youtube.com/user/SaltStack
https://www.facebook.com/SaltStack
https://twitter.com/SaltStackInc
http://en.wikipedia.org/wiki/Salt_(software)

CHAPTER 2

Installation

This section contains instructions to install Salt. If you are setting up your environment for the first time, you should
install a Salt master on a dedicated management server or VM, and then install a Salt minion on each system that you
want to manage using Salt. For now you don't need to worry about your architecture, you can easily add components
and modify your configuration later without needing to reinstall anything.

The general installation process is as follows:

1. Install a Salt master using the instructions for your platform or by running the Salt bootstrap script. If you use
the bootstrap script, be sure to include the =M option to install the Salt master.

2. Make sure that your Salt minions can find the Salt master.
3. Install the Salt minion on each system that you want to manage.
4. Accept the Salt minion keys after the Salt minion connects.

After this, you should be able to run a simple command and receive returns from all connected Salt minions.

’salt 'x' test.ping

2.1 Quick Install

On most distributions, you can set up a Salt Minion with the Salt bootstrap.

2.2 Platform-specific Installation Instructions

These guides go into detail how to install Salt on a given platform.

2.2.1 Arch Linux

Installation

Salt (stable) is currently available via the Arch Linux Official repositories. There are currently -git packages available
in the Arch User repositories (AUR) as well.




Salt Documentation, Release 2017.7.8

Stable Release

Install Salt stable releases from the Arch Linux Official repositories as follows:

pacman -S salt

Tracking develop

To install the bleeding edge version of Salt (may include bugs!), use the -git package. Installing the -git package as
follows:

wget https://aur.archlinux.org/packages/sa/salt-git/salt-git.tar.gz
tar xf salt-git.tar.gz

cd salt-git/

makepkg -is

Note: yaourt
If a tool such as Yaourt is used, the dependencies will be gathered and built automatically.

The command to install salt using the yaourt tool is:

yaourt salt-git

Post-installation tasks

systemd

Activate the Salt Master and/or Minion via systemct as follows:

systemctl enable salt-master.service
systemctl enable salt-minion.service

Start the Master

Once you've completed all of these steps you're ready to start your Salt Master. You should be able to start your Salt
Master now using the command seen here:

systemctl start salt-master

Now go to the Configuring Salt page.

2.2.2 Debian GNU/Linux / Raspbian

Debian GNU/Linux distribution and some derivatives such as Raspbian already have included Salt packages to their
repositories. However, current stable Debian release contains old outdated Salt releases. It is recommended to use
SaltStack repository for Debian as described below.

Installation from official Debian and Raspbian repositories is described here.

6 Chapter 2. Installation


https://aur.archlinux.org/packages.php?ID=5863

Salt Documentation, Release 2017.7.8

Installation from the Official SaltStack Repository

Packages for Debian 9 (Stretch) and Debian 8 (Jessie) are available in the Official SaltStack repository.

Instructions are at https://repo.saltstack.com/#debian.

Note: Regular security support for Debian 7 ended on April 25th 2016. As a result, 2016.3.1 and 2015.8.10 will be
the last Salt releases for which Debian 7 packages are created.

Installation from the Debian / Raspbian Official Repository

The Debian distributions contain mostly old Salt packages built by the Debian Salt Team. You can install Salt com-
ponents directly from Debian but it is recommended to use the instructions above for the packages from the official
Salt repository.

On Jessie there is an option to install Salt minion from Stretch with python-tornado dependency from jessie-backports
repositories.

To install fresh release of Salt minion on Jessie:
1. Add jessie-backports and stretch repositories:

Debian:

echo 'deb http://httpredir.debian.org/debian jessie-backports main' >> /etc/apt/
—.sources.list
echo 'deb http://httpredir.debian.org/debian stretch main' >> /etc/apt/sources.list

Raspbian:

echo 'deb http://archive.raspbian.org/raspbian/ stretch main' >> /etc/apt/sources.
~list

2. Make Jessie a default release:

echo 'APT::Default-Release "jessie";' > /Jetc/apt/apt.conf.d/1l0apt

3. Install Salt dependencies:
Debian:

apt-get update
apt-get install python-zmq python-systemd/jessie-backports python-tornado/jessie-
—backports salt-common/stretch

Raspbian:

apt-get update
apt-get install python-zmq python-tornado/stretch salt-common/stretch

4. Install Salt minion package from Latest Debian Release:

apt-get install salt-minion/stretch

2.2. Platform-specific Installation Instructions 7


https://repo.saltstack.com/#debian

Salt Documentation, Release 2017.7.8

Install Packages
Install the Salt master, minion or other packages from the repository with the apt-get command. These examples
each install one of Salt components, but more than one package name may be given at a time:

. apt-get install salt-api

. apt-get install salt-cloud

. apt-get install salt-master

. apt-get install salt-minion

. apt-get install salt-ssh

. apt-get dinstall salt-syndic

Post-installation tasks

Now, go to the Configuring Salt page.

2.2.3 Arista EOS Salt minion installation guide

The Salt minion for Arista EOS is distributed as a SWIX extension and can be installed directly on the switch. The EOS
network operating system is based on old Fedora distributions and the installation of the salt-minion requires
backports. This SWIX extension contains the necessary backports, together with the Salt basecode.

Note: This SWIX extension has been tested on Arista DCS-7280SE-68-R, running EOS 4.17.5M and vEOS 4.18.3F.

Important Notes

This package is in beta, make sure to test it carefully before running it in production.
If confirmed working correctly, please report and add a note on this page with the platform model and EOS version.
If you want to uninstall this package, please refer to the uninstalling section.

Installation from the Official SaltStack Repository

Download the swix package and save it to flash.

veos#copy https://salt-eos.netops.life/salt-eos-latest.swix flash:
veos#copy https://salt-eos.netops.life/startup.sh flash:

Install the Extension

Copy the Salt package to extension

veos#copy flash:salt-eos-latest.swix extension:

Install the SWIX

8 Chapter 2. Installation




Salt Documentation, Release 2017.7.8

veos#extension salt-eos-latest.swix force

Verify the installation

veos#show extensions | include salt-eos
salt-eo0s-2017-07-19.swix 1.0.11/1.fc25 A, F 27

Change the Salt master IP address or FQDN, by edit the variable (SALT_MASTER)

veos#bash vi /mnt/flash/startup.sh

Make sure you enable the eAPI with unix-socket

veos (config)#management api http-commands
protocol unix-socket
no shutdown

Post-installation tasks

Generate Keys and host record and start Salt minion

veos#bash
#sudo /mnt/flash/startup.sh

salt-minion should be running

Copy the installed extensions to boot-extensions

veos#copy installed-extensions boot-extensions

Apply event-handler to let EOS start salt-minion during boot-up

veos (config)#event-handler boot-up-script
trigger on-boot
action bash sudo /mnt/flash/startup.sh

For more specific installation details of the salt—-min-ion, please refer to Configuring Salt.

Uninstalling

If you decide to uninstall this package, the following steps are recommended for safety:

1. Remove the extension from boot-extensions

’veos#bash rm /mnt/flash/boot-extensions

2. Remove the extension from extensions folder

’veos#bash rm /mnt/flash/.extensions/salt-eos-latest.swix

2. Remove boot-up script

’veos(conf‘ig)#no event-handler boot-up-script

2.2. Platform-specific Installation Instructions 9



Salt Documentation, Release 2017.7.8

Additional Information

This SWIX extension contains the following RPM packages:

libsodium-1.0.11-1.fc25.7686.rpm
libstdc++-6.2.1-2.fc25.7686.rpm
openpgm-5.2.122-6.fc24.i686.rpm
python-Jinja2-2.8-0.1686.rpm
python-PyYAML-3.12-0.7686.rpm
python-babel-0.9.6-5.fcl8.noarch.rpm
python-backports-1.0-3.fc18.i686.rpm
python-backports-ssl_match_hostname-3.4.0.2-1.fcl8.noarch.rpm
python-backports_abc-0.5-0.i686.rpm
python-certifi-2016.9.26-0.1686.rpm
python-chardet-2.0.1-5.fcl8.noarch.rpm
python-crypto-1.4.1-1.noarch.rpm
python-crypto-2.6.1-1.fc18.1686.rpm
python-futures-3.1.1-1.noarch.rpm
python-jtextfsm-0.3.1-0.noarch.rpm
python-kitchen-1.1.1-2.fcl8.noarch.rpm
python-markupsafe-0.18-1.fc18.7686.rpm
python-msgpack-python-0.4.8-0.7686.rpm
python-napalm-base-0.24.3-1.noarch.rpm
python-napalm-eos-0.6.0-1.noarch.rpm
python-netaddr-0.7.18-0.noarch.rpm
python-pyeapi-0.7.0-0.noarch.rpm
python-salt-2017.7.0_1414_g2fb986f-1.noarch.rpm
python-singledispatch-3.4.0.3-0.1686.rpm
python-six-1.10.0-0.1686.rpm
python-tornado-4.4.2-0.7686.rpm
python-urllib3-1.5-7.fcl8.noarch.rpm
python2-zmg-15.3.0-2.fc25.i686.rpm
zeromg-4.1.4-5.fc25.1686.rpm

2.2.4 Fedora

Beginning with version 0.9.4, Salt has been available in the primary Fedora repositories and EPEL. It is installable
using yum or dnf, depending on your version of Fedora.

Note: Released versions of Salt starting with 2015.5. 2 through 2016. 3. 2 do not have Fedora packages available
though EPEL. To install a version of Salt within this release array, please use SaltStack's Bootstrap Script and use the
git method of installing Salt using the version's associated release tag.

Release 2016 . 3. 3 and onward will have packaged versions available via EPEL.

WARNING: Fedora 19 comes with systemd 204. Systemd has known bugs fixed in later revisions that prevent the
salt-master from starting reliably or opening the network connections that it needs to. It's not likely that a salt-
master will start or run reliably on any distribution that uses systemd version 204 or earlier. Running salt-minions
should be OK.

Installation

Salt can be installed using yum and is available in the standard Fedora repositories.

10 Chapter 2. Installation



http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
https://github.com/saltstack/salt-bootstrap
http://fedoraproject.org/wiki/EPEL

Salt Documentation, Release 2017.7.8

Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

yum install salt-master
yum install salt-minion

Installing from updates-testing

When a new Salt release is packaged, it is first admitted into the updates—-testing repository, before being
moved to the stable repo.

To install from updates-testing, use the enablerepo argument for yum:

yum -—enablerepo=updates-testing install salt-master
yum --enablerepo=updates-testing install salt-minion

Installation Using pip

Since Salt is on PyPI, it can be installed using pip, though most users prefer to install using a package manager.
Installing from pip has a few additional requirements:

« Install the group "Development Tools', dnf groupinstall 'Development Tools'

« Install the "zeromq-devel' package if it fails on linking against that afterwards as well.

A pip install does not make the init scripts or the /etc/salt directory, and you will need to provide your own systemd
service unit.

Installation from pip:

pip install salt

Warning: If installing from pip (or from source using setup.py install), be advised that the yum-utils
package is needed for Salt to manage packages. Also, if the Python dependencies are not already installed, then
you will need additional libraries/tools installed to build some of them. More information on this can be found
here.

Post-installation tasks

Master

To have the Master start automatically at boot time:

’systemctl enable salt-master.service

To start the Master:

’systemctl start salt-master.service

2.2. Platform-specific Installation Instructions 11


https://pypi.python.org/pypi/salt

Salt Documentation, Release 2017.7.8

Minion

To have the Minion start automatically at boot time:

’systemctl enable salt-minion.service

To start the Minion:

’systemctl start salt-minion.service

Now go to the Configuring Salt page.

2.2.5 FreeBSD

Installation

Salt is available in binary package form from both the FreeBSD pkgng repository or directly from SaltStack. The
instructions below outline installation via both methods:

FreeBSD repo

The FreeBSD pkgng repository is preconfigured on systems 10.x and above. No configuration is needed to pull from
these repositories.

pkg install py27-salt

These packages are usually available within a few days of upstream release.

SaltStack repo

SaltStack also hosts internal binary builds of the Salt package, available from https://repo.saltstack.com/freebsd/. To
make use of this repository, add the following file to your system:

/usr/local/etc/pkg/repos/saltstack.conf:

saltstack: {
url: "https://repo.saltstack.com/freebsd/${ABI}/",
enabled: yes

}

You should now be able to install Salt from this new repository:

pkg install py27-salt

These packages are usually available earlier than upstream FreeBSD. Also available are release candidates and de-
velopment releases. Use these pre-release packages with caution.

Post-installation tasks

Master

Copy the sample configuration file:

12 Chapter 2. Installation


https://repo.saltstack.com/freebsd/

Salt Documentation, Release 2017.7.8

’cp Jusr/local/etc/salt/master.sample /usr/local/etc/salt/master

rc.conf

Activate the Salt Master in /etc/rc.conf:

’ sysrc salt_master_enable="YES"

Start the Master

Start the Salt Master as follows:

’service salt_master start

Minion

Copy the sample configuration file:

’cp /usr/local/etc/salt/minion.sample /usr/local/etc/salt/minion

rc.conf

Activate the Salt Minion in /etc/rc.conf:

’ sysrc salt_minion_enable="YES"

Start the Minion

Start the Salt Minion as follows:

’service salt_minion start

Now go to the Configuring Salt page.

2.2.6 Gentoo

Salt can be easily installed on Gentoo via Portage:

emerge app-admin/salt

Post-installation tasks

Now go to the Configuring Salt page.

2.2.7 OpenBSD

Salt was added to the OpenBSD ports tree on Aug 10th 2013. It has been tested on OpenBSD 5.5 onwards.

Salt is dependent on the following additional ports. These will be installed as dependencies of the sysutils/salt
port:

devel/py-futures
devel/py-progressbar
net/py-msgpack
net/py-zmq
security/py-crypto

2.2. Platform-specific Installation Instructions 13



Salt Documentation, Release 2017.7.8

security/py-M2Crypto
textproc/py-MarkupSafe
textproc/py-yaml
www/py-jinja2
www/py-requests

www /py-tornado

Installation

To install Salt from the OpenBSD pkg repo, use the command:

pkg_add salt

Post-installation tasks

Master

To have the Master start automatically at boot time:

’rcctl enable salt_master

To start the Master:

’rcctl start salt_master

Minion

To have the Minion start automatically at boot time:

’rcctl enable salt_minion

To start the Minion:

’rcctl start salt_minion

Now go to the Configuring Salt page.

2.2.8 macOS
Installation from the Official SaltStack Repository

Latest stable build from the selected branch:
The output of md5 <sa'lt pkg> should match the contents of the corresponding md5 file.
Earlier builds from supported branches

Archived builds from unsupported branches

Installation from Homebrew

brew install saltstack

14 Chapter 2. Installation


https://repo.saltstack.com/osx/
https://repo.saltstack.com/osx/archive/

Salt Documentation, Release 2017.7.8

It should be noted that Homebrew explicitly discourages the use of sudo:

Homebrew is designed to work without using sudo. You can decide to use it but we strongly recommend
not to do so. If you have used sudo and run into a bug then it is likely to be the cause. Please don’t file
a bug report unless you can reproduce it after reinstalling Homebrew from scratch without using sudo

Installation from MacPorts

sudo port 1install salt

Installation from Pip

When only using the macOS system's pip, install this way:

sudo pip install salt

Salt-Master Customizations

Note: Salt master on macOS is not tested or supported by SaltStack. See SaltStack Platform Support for more
information.

To run salt-master on macOS, sudo add this configuration option to the /etc/salt/master file:

’ max_open_files: 8192

On versions previous to macOS 10.10 (Yosemite), increase the root user maxfiles limit:

’sudo launchctl limit maxfiles 4096 8192

Note: On macOS 10.10 (Yosemite) and higher, maxfiles should not be adjusted. The default limits are sufficient in
all but the most extreme scenarios. Overriding these values with the setting below will cause system instability!

Now the salt-master should run without errors:

sudo salt-master --log-level=all

Post-installation tasks

Now go to the Configuring Salt page.

2.2.9 RHEL / CentOS / Scientific Linux / Amazon Linux / Oracle Linux

Salt should work properly with all mainstream derivatives of Red Hat Enterprise Linux, including CentOS, Scientific
Linux, Oracle Linux, and Amazon Linux. Report any bugs or issues on the issue tracker.

2.2. Platform-specific Installation Instructions 15


https://github.com/Homebrew/homebrew/blob/master/share/doc/homebrew/FAQ.md#sudo
https://saltstack.com/product-support-lifecycle/
https://github.com/saltstack/salt/issues

Salt Documentation, Release 2017.7.8

Installation from the Official SaltStack Repository

Packages for Redhat, CentOS, and Amazon Linux are available in the SaltStack Repository.
» Red Hat / CentOS

« Amazon Linux

Note: As of 2015.8.0, EPEL repository is no longer required for installing on RHEL systems. SaltStack repository
provides all needed dependencies.

Warning: If installing on Red Hat Enterprise Linux 7 with disabled (not subscribed on) "RHEL Server Releases'
or "RHEL Server Optional Channel' repositories, append CentOS 7 GPG key URL to SaltStack yum repository
configuration to install required base packages:

[saltstack-repo]

name=SaltStack repo for Red Hat Enterprise Linux S$releasever
baseurl=https://repo.saltstack.com/yum/redhat/$releasever/Sbasearch/latest

enabled=1

gpgcheck=1
gpgkey=https://repo.saltstack.com/yum/redhat/$releasever/Sbasearch/latest/SALTSTACK-
—GPG-KEY . pub

https://repo.saltstack.com/yum/redhat/$releasever/$bhasearch/latest/base/RPM-
—GPG-KEY-Cent0S-7

Note: systemd and systemd-python are required by Salt, but are not installed by the Red Hat 7 @base
installation or by the Salt installation. These dependencies might need to be installed before Salt.

Installation from the Community-Maintained Repository

Beginning with version 0.9.4, Salt has been available in EPEL.

Note: Packages in this repository are built by community, and it can take a little while until the latest stable SaltStack
release become available.

RHEL/CentOS 6 and 7, Scientific Linux, etc.

Warning: Salt 2015.8 is currently not available in EPEL due to unsatisfied dependencies: python-crypto
2.6.1 or higher, and python-tornado version 4.2.1 or higher. These packages are not currently available in
EPEL for Red Hat Enterprise Linux 6 and 7.

Enabling EPEL

If the EPEL repository is not installed on your system, you can download the RPM for RHEL/CentOS 6 or for
RHEL/CentOS 7 and install it using the following command:

16 Chapter 2. Installation


https://repo.saltstack.com/#rhel
https://repo.saltstack.com/#amzn
http://fedoraproject.org/wiki/EPEL
http://download.fedoraproject.org/pub/epel/6/i386/repoview/epel-release.html
http://download.fedoraproject.org/pub/epel/7/x86_64/repoview/epel-release.html

Salt Documentation, Release 2017.7.8

rpm -Uvh epel-release-X-Y.rpm

Replace epel-release-X-Y. rpm with the appropriate filename.

Installing Stable Release

Salt is packaged separately for the minion and the master. It is necessary to install only the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

« yum install salt-master
« yum install salt-minion
« yum install salt-ssh

« yum install salt-syndic

« yum 1install salt-cloud

Installing from epel-testing

When a new Salt release is packaged, it is first admitted into the epel-testing repository, before being moved
to the stable EPEL repository.

To install from epel-testing, use the enablerepo argument for yum:

yum --enablerepo=epel-testing install salt-minion

Installation Using pip
Since Salt is on PyPI, it can be installed using pip, though most users prefer to install using RPM packages (which
can be installed from EPEL).
Installing from pip has a few additional requirements:
« Install the group ‘Development Tools', yum groupinstall 'Development Tools'
« Install the "zeromq-devel' package if it fails on linking against that afterwards as well.

A pip install does not make the init scripts or the /etc/salt directory, and you will need to provide your own systemd
service unit.

Installation from pip:

pip install salt

Warning: If installing from pip (or from source using setup.py install), be advised that the yum-utils
package is needed for Salt to manage packages. Also, if the Python dependencies are not already installed, then
you will need additional libraries/tools installed to build some of them. More information on this can be found
here.

2.2. Platform-specific Installation Instructions 17


https://pypi.python.org/pypi/salt
http://fedoraproject.org/wiki/EPEL

Salt Documentation, Release 2017.7.8

ZeroMQ 4

We recommend using ZeroMQ 4 where available. SaltStack provides ZeroMQ 4.0.5 and pyzmq 14.5.0 in the SaltStack

Repository.

If this repository is added before Salt is installed, then installing either salt-master or salt-minion will
automatically pull in ZeroMQ 4.0.5, and additional steps to upgrade ZeroMQ and pyzmgq are unnecessary.

Package Management

Salt's interface to yum makes heavy use of the repoquery utility, from the yum-utils package. This package will
be installed as a dependency if salt is installed via EPEL. However, if salt has been installed using pip, or a host is
being managed using salt-ssh, then as of version 2014.7.0 yum-utils will be installed automatically to satisfy this

dependency.

Post-installation tasks

Master

To have the Master start automatically at boot time:

RHEL/CentOS 5 and 6

’chkconﬁg salt-master on

RHEL/CentOS 7

’systemctl enable salt-master.service

To start the Master:
RHEL/CentOS 5 and 6

’service salt-master start

RHEL/CentOS 7

’systemctl start salt-master.service

Minion

To have the Minion start automatically at boot time:

RHEL/CentOS 5 and 6

’chkconf'ig salt-minion on

RHEL/CentOS 7

’systemctl enable salt-minion.service

To start the Minion:
RHEL/CentOS 5 and 6

18

Chapter 2. Installation


http://yum.baseurl.org/wiki/YumUtils
http://yum.baseurl.org/wiki/YumUtils

Salt Documentation, Release 2017.7.8

’service salt-minion start

RHEL/CentOS 7

’systemctl start salt-minion.service

Now go to the Configuring Salt page.

2.2.10 Solaris

Salt is known to work on Solaris but community packages are unmaintained.

It is possible to install Salt on Solaris by using setuptools.

For example, to install the develop version of salt:

git clone https://github.com/saltstack/salt

cd salt
sudo python setup.py install --force

Note: SaltStack does offer commercial support for Solaris which includes packages.

2.2.11 Ubuntu

Installation from the Official SaltStack Repository

Packages for Ubuntu 16 (Xenial), Ubuntu 14 (Trusty), and Ubuntu 12 (Precise) are available in the SaltStack repository.

Instructions are at https://repo.saltstack.com/#ubuntu.

Install Packages

Install the Salt master, minion or other packages from the repository with the apt-get command. These examples
each install one of Salt components, but more than one package name may be given at a time:

apt-get
apt-get
apt-get
apt-get
apt-get
apt-get

install
install
install
install
install
install

Post-installation tasks

salt-api
salt-cloud
salt-master
salt-minion
salt-ssh

salt-syndic

Now go to the Configuring Salt page.

2.2. Platform-specific Installation Instructions

19



https://repo.saltstack.com/#ubuntu

Salt Documentation, Release 2017.7.8

2.2.12 Windows
Salt has full support for running the Salt minion on Windows. You must connect Windows Salt minions to a Salt
master on a supported operating system to control your Salt Minions.

Many of the standard Salt modules have been ported to work on Windows and many of the Salt States currently
work on Windows as well.

Installation from the Official SaltStack Repository

Latest stable build from the selected branch:
The output of md5sum <salt minion exe> should match the contents of the corresponding md5 file.
Earlier builds from supported branches

Archived builds from unsupported branches

Note: The installation executable installs dependencies that the Salt minion requires.

The 64bit installer has been tested on Windows 7 64bit and Windows Server 2008R2 64bit. The 32bit installer has
been tested on Windows 2008 Server 32bit. Please file a bug report on our GitHub repo if issues for other platforms
are found.

There are installers available for Python 2 and Python 3.

The installer will detect previous installations of Salt and ask if you would like to remove them. Clicking OK will
remove the Salt binaries and related files but leave any existing config, cache, and PKI information.

Salt Minion Installation

After the Welcome and the License Agreement, the installer asks for two bits of information to configure the minion;
the master hostname and the minion name. The installer will update the minion config with these options. If the
installer finds an existing minion config file, these fields will be populated with values from the existing config.

The final page allows you to start the minion service and optionally change its startup type. By default, the minion
is set to Automatic. You can change the minion start type to Automatic (Delayed Start) by checking
the 'Delayed Start' checkbox.

Note: Highstates that require a reboot may fail after reboot because salt continues the highstate before Windows
has finished the booting process. This can be fixed by changing the startup type to *Automatic (Delayed Start)'. The
drawback is that it may increase the time it takes for the “salt-minion' service to actually start.

The salt-minion service will appear in the Windows Service Manager and can be managed there or from the
command line like any other Windows service.

sc start salt-minion
net start salt-minion

Note: If the minion won't start, you may need to install the Microsoft Visual C++ 2008 x64 SP1 redistributable.
Allow all Windows updates to run salt-minion smoothly.

20 Chapter 2. Installation



https://repo.saltstack.com/windows/
https://repo.saltstack.com/windows/archive/

Salt Documentation, Release 2017.7.8

Installation Prerequisites

Most Salt functionality should work just fine right out of the box. A few Salt modules rely on PowerShell. The
minimum version of PowerShell required for Salt is version 3. If you intend to work with DSC then Powershell
version 5 is the minimum.

Silent Installer Options

The installer can be run silently by providing the /S option at the command line. The installer also accepts the
following options for configuring the Salt Minion silently:

Option Description

/minion-name= A string value to set the minion name. Default is "hostname'

/master= A string value to set the IP address or host name of the master. Default value is “salt'

/start-minion= Either a 1 or 0. “1' will start the salt-minion service, *0' will not. Default is to start the
service after installation.

/start-minion- Set the minion start type to Automatic (Delayed Start)

delayed

Note: /start-service hasbeen deprecated but will continue to function as expected for the time being.

Here are some examples of using the silent installer:

# Install the Salt Minion
# Configure the minion and start the service

Salt-Minion-2017.7.1-Py2-AMD64-Setup.exe /S /master=yoursaltmaster /minion-
—»nName=yourminionname

# Install the Salt Minion
# Configure the minion but don't start the minion service

Salt-Minion-2017.7.1-Py3-AMD64-Setup.exe /S /master=yoursaltmaster /minion-
—»name=yourminionname /start-minion=0

Running the Salt Minion on Windows as an Unprivileged User

Notes:
« These instructions were tested with Windows Server 2008 R2

« They are generalizable to any version of Windows that supports a salt-minion

Create the Unprivileged User that the Salt Minion will Run As

1. Click Start > Control Panel > User Accounts.
. Click Add or remove user accounts.

. Click Create new account.

=W N

. Enter salt-user (or a name of your preference) in the New account name field.

5. Select the Standard user radio button.

2.2. Platform-specific Installation Instructions 21




Salt Documentation, Release 2017.7.8

NeREe B )

10.
11.
12.

. Click the Create Account button.
. Click on the newly created user account.
. Click the Create a password link.

. In the New password and Confirm new password fields, provide a password (e.g ' SuperSecretMin-

ionPassword4Me!").
In the Type a password hint field, provide appropriate text (e.g. My Salt Password").
Click the Create password button.

Close the Change an Account window.

Add the New User to the Access Control List for the Salt Folder

O 0 9 N U~ W

. In a File Explorer window, browse to the path where Salt is installed (the default path is C:\Salt).
. Right-click on the Sa'lt folder and select Properties.

. Click on the Security tab.

. Click the Ed1t button.

. Click the Add button.

. Type the name of your designated Salt user and click the OK button.

. Check the box to Allow the Mod1 fy permission.

. Click the OK button.

. Click the OK button to close the Salt Properties window.

Update the Windows Service User for the salt-minion Service

1.
2.

3
4
5.
6
7

10.

Click Start > Administrative Tools > Services.

In the Services list, right-click on salt-minion and select Properties.

. Click the Log On tab.

. Click the This account radio button.

Provide the account credentials created in section A.

. Click the OK button.

. Click the OK button to the prompt confirming that the user has been granted the Log On As A

Service right.

. Click the OK button to the prompt confirming that The new logon name will not take effect

until you stop and restart the service.

. Right-Click on salt-minion and select Stop.

Right-Click on salt-minion and select Start.

22

Chapter 2. Installation



Salt Documentation, Release 2017.7.8

Building and Developing on Windows

This document will explain how to set up a development environment for Salt on Windows. The development
environment allows you to work with the source code to customize or fix bugs. It will also allow you to build your
own installation.

There are several scripts to automate creating a Windows installer as well as setting up an environment that facilitates
developing and troubleshooting Salt code. They are located in the pkg\windows directory in the Salt repo (here).

Scripts:

Script Description

build_env_2.ps1 A PowerShell script that sets up a Python 2 build environment

build_env_3.psl A PowerShell script that sets up a Python 3 build environment

build_pkg.bat | A batch file that builds a Windows installer based on the contents of the C: \Python27
directory

build.bat A batch file that fully automates the building of the Windows installer using the above
two scripts

Note: The build.bat and build_pkg.bat scripts both accept a parameter to specify the version of Salt that
will be displayed in the Windows installer. If no version is passed, the version will be determined using git.

Both scripts also accept an additional parameter to specify the version of Python to use. The default is 2.

Prerequisite Software

The only prerequisite is Git for Windows.

Create a Build Environment
1. Working Directory

Create a Salt-Dev directory on the root of C:. This will be our working directory. Navigate to Salt-Dev and
clone the Salt repo from GitHub.

Open a command line and type:

cd \

md Salt-Dev

cd Salt-Dev

git clone https://github.com/saltstack/salt

Go into the salt directory and checkout the version of salt to work with (2016.3 or higher).

cd salt
git checkout 2017.7.2

2. Setup the Python Environment

Navigate to the pkg\windows directory and execute the build_env.ps1 PowerShell script.

2.2. Platform-specific Installation Instructions 23



https://github.com/saltstack/salt/tree/develop/pkg/windows
https://git-scm.com/download/win/
https://github.com/saltstack/salt/

Salt Documentation, Release 2017.7.8

cd pkg\windows
powershell -file build_env_2.psl

Note: You can also do this from Explorer by navigating to the pkg\windows directory, right clicking the
build_env_2.ps1 powershell script and selecting Run with PowerShell

This will download and install Python 2 with all the dependencies needed to develop and build Salt.

Note: If you get an error or the script fails to run you may need to change the execution policy. Open a powershell
window and type the following command:

Set-ExecutionPolicy RemoteSigned

3. Salt in Editable Mode

Editable mode allows you to more easily modify and test the source code. For more information see the Pip docu-
mentation.

Navigate to the root of the salt directory and install Salt in editable mode with pip

cd \Salt-Dev\salt
pip install -e .

Note: The . is important

Note: If pip is not recognized, you may need to restart your shell to get the updated path

Note: If pip is still not recognized make sure that the Python Scripts folder is in the System %PATH%.
(C:\Python2\Scripts)

4. Setup Salt Configuration

Salt requires a minion configuration file and a few other directories. The default config file is named minion located
inC:\salt\conf. The easiest way to set this up is to copy the contents of the salt\pkg\windows\buildenv
directory to C:\salt.

cd \
md salt
xcopy /s /e \Salt-Dev\salt\pkg\windows\buildenv\* \salt)\

Now go into the C:\salt\conf directory and edit the minion config file named minion (no extension). You
need to configure the master and id parameters in this file. Edit the following lines:

master: <ip or name of your master>
id: <name of your minion>

24 Chapter 2. Installation



https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs
https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs

Salt Documentation, Release 2017.7.8

Create a Windows Installer

To create a Windows installer, follow steps 1 and 2 from Create a Build Environment above. Then proceed to 3 below:

3. Install Salt

To create the installer for Window we install Salt using Python instead of pip. Navigate to the root sa'lt directory
and install Salt.

cd \Salt-Dev\salt
python setup.py install

4. Create the Windows Installer

Navigate to the pkg\windows directory and run the build_pkg.bat with the build version (2017.7.2) and the
Python version as parameters.

cd pkg\windows
build_pkg.bat 2017.7.2 2

AAAAAAAAN A

# build version -- |
# python version ------

Note: If no version is passed, the build_pkg.bat will guess the version number using git. If the python version
is not passed, the default is 2.

Creating a Windows Installer: Alternate Method (Easier)

Clone the Salt repo from GitHub into the directory of your choice. We're going to use Salt-Dev.

cd \

md Salt-Dev

cd Salt-Dev

git clone https://github.com/saltstack/salt

Go into the salt directory and checkout the version of Salt you want to build.

cd salt
git checkout 2017.7.2

Then navigate to pkg\windows and run the build.bat script with the version you're building.

cd pkg\windows
build.bat 2017.7.2 3

AAAAAAAN A

# build version |
# python version --

This will install everything needed to build a Windows installer for Salt using Python 3. The binary will be in the
salt\pkg\windows\installer directory.

2.2. Platform-specific Installation Instructions 25



https://github.com/saltstack/salt/

Salt Documentation, Release 2017.7.8

Testing the Salt minion

1. Create the directory C:\sa'lt (if it doesn't exist already)
2. Copy the example conf and var directories from pkg\windows\buildenv into C:\salt

3. Edit C:\salt\conf\minion

master: +dipaddress or hostname of your salt-master

4. Start the salt-minion

cd C:\Python27\Scripts
python salt-minion -1 debug

5. On the salt-master accept the new minion's key

sudo salt-key -A

This accepts all unaccepted keys. If you're concerned about security just accept the key for this
specific minion.

6. Test that your minion is responding

On the salt-master run:

sudo salt 'x' test.ping

You should get the following response: {'your minion hostname': True}

Packages Management Under Windows 2003
Windows Server 2003 and Windows XP have both reached End of Support. Though Salt is not officially supported
on operating systems that are EoL, some functionality may continue to work.

On Windows Server 2003, you need to install optional component *“WMI Windows Installer Provider” to get a full
list of installed packages. If you don't have this, salt-minion can't report some installed software.

2.2.13 SUSE

Installation from the Official SaltStack Repository

Packages for SUSE 12 SP1, SUSE 12, SUSE 11, openSUSE 13 and openSUSE Leap 42.1 are available in the SaltStack
Repository.

Instructions are at https://repo.saltstack.com/#suse.

Installation from the SUSE Repository

Since openSUSE 13.2, Salt 2014.1.11 is available in the primary repositories. With the release of SUSE manager 3 a
new repository setup has been created. The new repo will by systemsmanagement:saltstack, which is the source for
newer stable packages. For backward compatibility a linkpackage will be created to the old devel:language:python
repo. All development of suse packages will be done in systemsmanagement:saltstack:testing. This will ensure that
salt will be in mainline suse repo's, a stable release repo and a testing repo for further enhancements.

26 Chapter 2. Installation


https://repo.saltstack.com/#suse

Salt Documentation, Release 2017.7.8

Installation
Salt can be installed using zypper and is available in the standard openSUSE/SLES repositories.
Stable Release

Salt is packaged separately for the minion and the master. It is necessary only to install the appropriate package for
the role the machine will play. Typically, there will be one master and multiple minions.

zypper install salt-master
zypper install salt-minion

Post-installation tasks openSUSE

Master

To have the Master start automatically at boot time:

’systemctl enable salt-master.service

To start the Master:

’systemctl start salt-master.service

Minion

To have the Minion start automatically at boot time:

’systemctl enable salt-minion.service

To start the Minion:

’systemctl start salt-minion.service

Post-installation tasks SLES

Master

To have the Master start automatically at boot time:

’chkconf‘ig salt-master on

To start the Master:

’ rcsalt-master start

Minion

To have the Minion start automatically at boot time:

’chkconf'ig salt-minion on

To start the Minion:

2.2. Platform-specific Installation Instructions 27



Salt Documentation, Release 2017.7.8

rcsalt-minion start

Unstable Release
openSUSE

For openSUSE Tumbleweed run the following as root:

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—openSUSE_Tumbleweed/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

For openSUSE 42.1 Leap run the following as root:

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—openSUSE_Leap_42.1/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

For openSUSE 13.2 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—openSUSE_13.2/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

SUSE Linux Enterprise

For SLE 12 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—SLE_12/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

For SLE 11 SP4 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/systemsmanagement:/saltstack/
—SLE_11_SP4/systemsmanagement:saltstack.repo

zypper refresh

zypper install salt salt-minion salt-master

Now go to the Configuring Salt page.

2.3 Initial Configuration

2.3.1 Configuring Salt

Salt configuration is very simple. The default configuration for the master will work for most installations and the
only requirement for setting up a minion is to set the location of the master in the minion configuration file.

28 Chapter 2. Installation




Salt Documentation, Release 2017.7.8

The configuration files will be installed to /etc/salt and are named after the respective components,
/etc/salt/master,and /etc/salt/minion.

Master Configuration

By default the Salt master listens on ports 4505 and 4506 on all interfaces (0.0.0.0). To bind Salt to a specific IP,
redefine the "interface" directive in the master configuration file, typically /etc/salt/master, as follows:

- #interface: 0.0.0.0
+ 1dinterface: 10.0.0.1

After updating the configuration file, restart the Salt master. See the master configuration reference for more details
about other configurable options.

Minion Configuration

Although there are many Salt Minion configuration options, configuring a Salt Minion is very simple. By default
a Salt Minion will try to connect to the DNS name " salt"; if the Minion is able to resolve that name correctly, no
configuration is needed.

If the DNS name " “salt" does not resolve to point to the correct location of the Master, redefine the " “master” directive
in the minion configuration file, typically /etc/salt/minion, as follows:

- #master: salt
+ master: 10.0.0.1

After updating the configuration file, restart the Salt minion. See the minion configuration reference for more details
about other configurable options.

Proxy Minion Configuration

A proxy minion emulates the behaviour of a regular minion and inherits their options.
Similarly, the configuration file is /etc/salt/proxy and the proxy tries to connect to the DNS name " “salt".

In addition to the regular minion options, there are several proxy-specific - see the proxy minion configuration refer-
ence.

Running Salt

1. Start the master in the foreground (to daemonize the process, pass the -d flag):

’salt—master

2. Start the minion in the foreground (to daemonize the process, pass the -d flag):

’ salt-minion

Having trouble?

The simplest way to troubleshoot Salt is to run the master and minion in the foreground with log level set to

debug:

2.3. Initial Configuration 29



Salt Documentation, Release 2017.7.8

salt-master --log-level=debug

For information on salt's logging system please see the logging document.

Run as an unprivileged (non-root) user
To run Salt as another user, set the user parameter in the master config file.

Additionally, ownership, and permissions need to be set such that the desired user can read from and write to the
following directories (and their subdirectories, where applicable):

« /etc/salt

« /var/cache/salt
« /var/log/salt

« /var/run/salt

More information about running salt as a non-privileged user can be found here.

There is also a full troubleshooting guide available.

Key Identity

Salt provides commands to validate the identity of your Salt master and Salt minions before the initial key exchange.
Validating key identity helps avoid inadvertently connecting to the wrong Salt master, and helps prevent a potential
MiTM attack when establishing the initial connection.

Master Key Fingerprint

Print the master key fingerprint by running the following command on the Salt master:

salt-key -F master

Copy the master . pub fingerprint from the Local Keys section, and then set this value as the master_finger
in the minion configuration file. Save the configuration file and then restart the Salt minion.

Minion Key Fingerprint

Run the following command on each Salt minion to view the minion key fingerprint:

salt-call --local key.finger

Compare this value to the value that is displayed when you run the salt-key --finger <MINION_ID>
command on the Salt master.

Key Management

Salt uses AES encryption for all communication between the Master and the Minion. This ensures that the commands
sent to the Minions cannot be tampered with, and that communication between Master and Minion is authenticated
through trusted, accepted keys.

30 Chapter 2. Installation



Salt Documentation, Release 2017.7.8

Before commands can be sent to a Minion, its key must be accepted on the Master. Run the salt—key command
to list the keys known to the Salt Master:

[root@master ~]# salt-key -L
Unaccepted Keys:

alpha

bravo

charlie

delta

Accepted Keys:

This example shows that the Salt Master is aware of four Minions, but none of the keys has been accepted. To accept
the keys and allow the Minions to be controlled by the Master, again use the salt-key command:

[root@master ~]# salt-key -A
[root@master ~]# salt-key -L
Unaccepted Keys:

Accepted Keys:

alpha

bravo

charlie

delta

The salt-key command allows for signing keys individually or in bulk. The example above, using —A bulk-accepts
all pending keys. To accept keys individually use the lowercase of the same option, —a keyname.

See also:
salt-key manpage
Sending Commands

Communication between the Master and a Minion may be verified by running the test.ping command:

[root@master ~]# salt alpha test.ping
alpha:
True

Communication between the Master and all Minions may be tested in a similar way:

[root@master ~]# salt 'x' test.ping
alpha:
True
bravo:
True
charlie:
True
delta:
True

Each of the Minions should send a True response as shown above.

What's Next?

Understanding targeting is important. From there, depending on the way you wish to use Salt, you should also
proceed to learn about Remote Execution and Configuration Management.

2.3. Initial Configuration 31




Salt Documentation, Release 2017.7.8

2.4 Additional Installation Guides

2.4.1 Salt Bootstrap

The Salt Bootstrap Script allows a user to install the Salt Minion or Master on a variety of system distributions and
versions.

The Salt Bootstrap Script is a shell script is known as bootstrap—-salt. sh. It runs through a series of checks to
determine the operating system type and version. It then installs the Salt binaries using the appropriate methods.

The Salt Bootstrap Script installs the minimum number of packages required to run Salt. This means that in the event
you run the bootstrap to install via package, Git will not be installed. Installing the minimum number of packages
helps ensure the script stays as lightweight as possible, assuming the user will install any other required packages
after the Salt binaries are present on the system.

The Salt Bootstrap Script is maintained in a separate repo from Salt, complete with its own issues, pull requests,
contributing guidelines, release protocol, etc.

To learn more, please see the Salt Bootstrap repo links:
« Salt Bootstrap repo
« README: includes supported operating systems, example usage, and more.
« Contributing Guidelines

« Release Process

Note: The Salt Bootstrap script can be found in the Salt repo under the salt/cloud/deploy/bootstrap-
salt.sh path. Any changes to this file will be overwritten! Bug fixes and feature additions must be submitted via
the Salt Bootstrap repo. Please see the Salt Bootstrap Script's Release Process for more information.

2.4.2 Opening the Firewall up for Salt

The Salt master communicates with the minions using an AES-encrypted ZeroMQ connection. These communi-
cations are done over TCP ports 4505 and 4506, which need to be accessible on the master only. This document
outlines suggested firewall rules for allowing these incoming connections to the master.

Note: No firewall configuration needs to be done on Salt minions. These changes refer to the master only.

Fedora 18 and beyond / RHEL 7 / CentOS 7

Starting with Fedora 18 FirewallD is the tool that is used to dynamically manage the firewall rules on a host. It has
support for IPv4/6 settings and the separation of runtime and permanent configurations. To interact with FirewallD
use the command line client firewall-cmd.

firewall-cmd example:

firewall-cmd --permanent --zone=<zone> --add-port=4505-4506/tcp

Please choose the desired zone according to your setup. Don't forget to reload after you made your changes.

32 Chapter 2. Installation


https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap#bootstrapping-salt
https://github.com/saltstack/salt-bootstrap/blob/develop/CONTRIBUTING.md
https://github.com/saltstack/salt-bootstrap/blob/develop/CONTRIBUTING.md#release-information
https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap/blob/develop/CONTRIBUTING.md#release-information
https://fedoraproject.org/wiki/FirewallD

Salt Documentation, Release 2017.7.8

firewall-cmd --reload

RHEL 6 / CentOS 6

The lokkit command packaged with some Linux distributions makes opening iptables firewall ports very simple
via the command line. Just be careful to not lock out access to the server by neglecting to open the ssh port.

lokkit example:

llokkit -p 22:tcp -p 4505:tcp -p 4506:tcp ‘

The system-config-firewall-tui command provides a text-based interface to modifying the firewall.

system-config-firewall-tui:

’ system-config-firewall-tui ‘

openSUSE

Salt installs firewall rules in /etc/sysconfig/SuSEfirewall2.d/services/salt. Enable with:

SuSEfirewall2 open
SuSEfirewall2 start

If you have an older package of Salt where the above configuration file is not included, the SUSEfirewall2
command makes opening iptables firewall ports very simple via the command line.

SuSEfirewall example:

SuSEfirewall2 open EXT TCP 4505
SuSEfirewall2 open EXT TCP 4506

The firewall module in YaST2 provides a text-based interface to modifying the firewall.

YaST?2:

yast2 firewall

Windows

Windows Firewall is the default component of Microsoft Windows that provides firewalling and packet filtering.
There are many 3rd party firewalls available for Windows, some of which use rules from the Windows Firewall. If
you are experiencing problems see the vendor's specific documentation for opening the required ports.

The Windows Firewall can be configured using the Windows Interface or from the command line.
Windows Firewall (interface):

1. Open the Windows Firewall Interface by typing wf . msc at the command prompt or in a run dialog (Windows
Key + R)

2. Navigate to Inbound Rules in the console tree
3. Add a new rule by clicking New Rule... in the Actions area

4. Change the Rule Type to Port. Click Next

2.4. Additional Installation Guides 33


https://github.com/saltstack/salt/blob/develop/pkg/suse/salt.SuSEfirewall2

Salt Documentation, Release 2017.7.8

5. Set the Protocol to TCP and specify local ports 4505-4506. Click Next

6. Set the Action to Allow the connection. Click Next

7. Apply the rule to Domain, Private, and Public. Click Next

8. Give the new rule a Name, ie: Salt. You may also add a description. Click Finish
Windows Firewall (command line):

The Windows Firewall rule can be created by issuing a single command. Run the following command from the
command line or a run prompt:

netsh advfirewall firewall add rule name="Salt" dir=in action=allow protocol=TCPK
< Llocalport=4505-4506

iptables

Different Linux distributions store their iptables (also known as netfilter) rules in different places, which makes it
difficult to standardize firewall documentation. Included are some of the more common locations, but your mileage
may vary.

Fedora / RHEL / CentOS:

’ /etc/sysconfig/iptables

Arch Linux:

’ /etc/iptables/iptables.rules

Debian
Follow these instructions: https://wiki.debian.org/iptables

Once you've found your firewall rules, you'll need to add the two lines below to allow traffic on tcp/4505 and
tcp/4506:

-A INPUT -m state --state new -m tcp -p tcp --dport 4505 -j ACCEPT
-A INPUT -m state --state new -m tcp -p tcp --dport 4506 -j ACCEPT

Ubuntu

Salt installs firewall rules in /etc/ufw/applications.d/salt.ufw. Enable with:

ufw allow salt

pf.conf

The BSD-family of operating systems uses packet filter (pf). The following example describes the additions to
pf.conf needed to access the Salt master.

pass 1in on $int_if proto tcp from any to $int_if port 4505
pass 1in on S$int_if proto tcp from any to $int_if port 4506

Once these additions have been made to the pf.conf the rules will need to be reloaded. This can be done using
the pfctl command.

34 Chapter 2. Installation


http://www.netfilter.org/
https://wiki.debian.org/iptables
https://github.com/saltstack/salt/blob/develop/pkg/salt.ufw
http://openbsd.org/faq/pf/

Salt Documentation, Release 2017.7.8

pfctl -vf /etc/pf.conf

2.4.3 Whitelist communication to Master

There are situations where you want to selectively allow Minion traffic from specific hosts or networks into your Salt
Master. The first scenario which comes to mind is to prevent unwanted traffic to your Master out of security concerns,
but another scenario is to handle Minion upgrades when there are backwards incompatible changes between the
installed Salt versions in your environment.

Here is an example Linux iptables ruleset to be set on the Master:

# Allow Minions from these networks

-I INPUT -s 10.1.2.0/24 -p tcp -m multiport --dports 4505,4506 -j ACCEPT
-I INPUT -s 10.1.3.0/24 -p tcp -m multiport --dports 4505,4506 -j ACCEPT
# Allow Salt to communicate with Master on the loopback interface

-A INPUT -i lo -p tcp -m multiport --dports 4505,4506 -j ACCEPT

# Reject everything else

-A INPUT -p tcp -m multiport --dports 4505,4506 -j REJECT

Note: The important thing to note here is that the salt command needs to communicate with the listening
network socket of salt-master on the loopback interface. Without this you will see no outgoing Salt traffic from
the master, even for a simple salt '*' test.ping, because the salt client never reached the salt-master
to tell it to carry out the execution.

2.4.4 Preseed Minion with Accepted Key

In some situations, it is not convenient to wait for a minion to start before accepting its key on the master. For
instance, you may want the minion to bootstrap itself as soon as it comes online. You may also want to let your
developers provision new development machines on the fly.

See also:

Many ways to preseed minion keys

Salt has other ways to generate and pre-accept minion keys in addition to the manual steps outlined below.
salt-cloud performs these same steps automatically when new cloud VMs are created (unless instructed not to).

salt-api exposes an HTTP call to Salt's REST API to generate and download the new minion keys as
a tarball.

There is a general four step process to do this:

1. Generate the keys on the master:

’root@saltmaster# salt-key --gen-keys=[key_name]

Pick a name for the key, such as the minion's id.

2. Add the public key to the accepted minion folder:

’root@saltmaster# cp key_name.pub /etc/salt/pki/master/minions/[minion_id]

2.4. Additional Installation Guides 35



Salt Documentation, Release 2017.7.8

It is necessary that the public key file has the same name as your minion id. This is how Salt matches minions with
their keys. Also note that the pki folder could be in a different location, depending on your OS or if specified in the
master config file.

3. Distribute the minion keys.

There is no single method to get the keypair to your minion. The difficulty is finding a dis-
tribution method which is secure. For Amazon EC2 only, an AWS best practice is to use IAM
Roles to pass credentials.  (See blog post, http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/
Using-IAM-roles-to-distribute-non- AWS-credentials-to-your-EC2-instances )

Security Warning

Since the minion key is already accepted on the master, distributing the private key poses a potential security risk.
A malicious party will have access to your entire state tree and other sensitive data if they gain access to a preseeded
minion key.

4. Preseed the Minion with the keys

You will want to place the minion keys before starting the salt-minion daemon:

/etc/salt/pki/minion/minion.pem
/etc/salt/pki/minion/minion.pub

Once in place, you should be able to start salt-minion and run salt-call state.apply or any other salt
commands that require master authentication.

2.4.5 The macOS (Maverick) Developer Step By Step Guide To Salt Installation

This document provides a step-by-step guide to installing a Salt cluster consisting of one master, and one minion
running on a local VM hosted on macOS.

Note: This guide is aimed at developers who wish to run Salt in a virtual machine. The official (Linux) walkthrough
can be found here.

The 5 Cent Salt Intro

Since you're here you've probably already heard about Salt, so you already know Salt lets you configure and run
commands on hordes of servers easily. Here's a brief overview of a Salt cluster:

« Salt works by having a * "'master" server sending commands to one or multiple *'minion" servers. The master
server is the "“command center". It is going to be the place where you store your configuration files, aka:
““which server is the db, which is the web server, and what libraries and software they should have installed".
The minions receive orders from the master. Minions are the servers actually performing work for your busi-
ness.

« Salt has two types of configuration files:

1. the "“salt communication channels” or *“meta" or " "config" configuration files (not official names): one for
the master (usually is /etc/salt/master , on the master server), and one for minions (default is /etc/salt/minion
or /etc/salt/minion.conf, on the minion servers). Those files are used to determine things like the Salt Master
IP, port, Salt folder locations, etc.. If these are configured incorrectly, your minions will probably be unable to
receive orders from the master, or the master will not know which software a given minion should install.

36 Chapter 2. Installation



http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-AWS-credentials-to-your-EC2-instances
http://blogs.aws.amazon.com/security/post/Tx610S2MLVZWEA/Using-IAM-roles-to-distribute-non-AWS-credentials-to-your-EC2-instances
http://docs.saltstack.com/topics/tutorials/walkthrough.html

Salt Documentation, Release 2017.7.8

2. the ““business" or "“service" configuration files (once again, not an official name): these are configuration
files, ending with ".sls" extension, that describe which software should run on which server, along with par-
ticular configuration properties for the software that is being installed. These files should be created in the
/srv/salt folder by default, but their location can be changed using ... /etc/salt/master configuration file!

Note: This tutorial contains a third important configuration file, not to be confused with the previous two: the
virtual machine provisioning configuration file. This in itself is not specifically tied to Salt, but it also contains some
Salt configuration. More on that in step 3. Also note that all configuration files are YAML files. So indentation
matters.

Note: Salt also works with *“masterless" configuration where a minion is autonomous (in which case salt can be
seen as a local configuration tool), or in " "multiple master" configuration. See the documentation for more on that.

Before Digging In, The Architecture Of The Salt Cluster
Salt Master

The **Salt master" server is going to be the Mac OS machine, directly. Commands will be run from a terminal app, so
Salt will need to be installed on the Mac. This is going to be more convenient for toying around with configuration
files.

Salt Minion

We'll only have one **Salt minion" server. It is going to be running on a Virtual Machine running on the Mac, using
VirtualBox. It will run an Ubuntu distribution.

Step 1 - Configuring The Salt Master On Your Mac

Official Documentation

Because Salt has a lot of dependencies that are not built in macOS, we will use Homebrew to install Salt. Homebrew
is a package manager for Mac, it's great, use it (for this tutorial at least!). Some people spend a lot of time installing
libs by hand to better understand dependencies, and then realize how useful a package manager is once they're
configuring a brand new machine and have to do it all over again. It also lets you uninstall things easily.

Note: Brew is a Ruby program (Ruby is installed by default with your Mac). Brew downloads, compiles, and links
software. The linking phase is when compiled software is deployed on your machine. It may conflict with manually
installed software, especially in the /usr/local directory. It's ok, remove the manually installed version then refresh
the link by typing brew T1ink 'packageName'. Brew has a brew doctor command that can help you
troubleshoot. It's a great command, use it often. Brew requires xcode command line tools. When you run brew the
first time it asks you to install them if they're not already on your system. Brew installs software in /usr/local/bin
(system bins are in /usr/bin). In order to use those bins you need your $PATH to search there first. Brew tells you if
your $PATH needs to be fixed.

Tip: Use the keyboard shortcut cmd + shift + period in the *“open" macOS dialog box to display hidden
files and folders, such as .profile.

2.4. Additional Installation Guides 37


http://docs.saltstack.com/topics/installation/osx.html

Salt Documentation, Release 2017.7.8

Install Homebrew

Install Homebrew here http://brew.sh/

Or just type

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/
—install)"

Now type the following commands in your terminal (you may want to type brew doctor after each to make sure
everything's fine):

brew install python
brew install swig
brew install zmq

Note: zmgq is ZeroMQ. It's a fantastic library used for server to server network communication and is at the core of
Salt efficiency.

Install Salt

You should now have everything ready to launch this command:

pip install salt

Note: There should be noneed for sudo pip install salt. Brew installed Python for your user, so you should
have all the access. In case you would like to check, type which python to ensure that it's /usr/local/bin/python,
and which pip which should be /usr/local/bin/pip.

Now type python in a terminal then, import salt. There should be no errors. Now exit the Python terminal
using exit ().

Create The Master Configuration

If the default /etc/salt/master configuration file was not created, copy-paste it from here: http://docs.saltstack.com/
ref/configuration/examples.html#configuration-examples-master

Note: /etc/salt/master is afile, not a folder.

Salt Master configuration changes. The Salt master needs a few customization to be able to run on macOS:

sudo launchctl limit maxfiles 4096 8192

In the /etc/salt/master file, change max_open_files to 8192 (or just add the line: max_open_files: 8192 (no
quote) if it doesn't already exists).

You should now be able to launch the Salt master:

sudo salt-master --log-level=all

38 Chapter 2. Installation



http://brew.sh/
http://docs.saltstack.com/ref/configuration/examples.html#configuration-examples-master
http://docs.saltstack.com/ref/configuration/examples.html#configuration-examples-master

Salt Documentation, Release 2017.7.8

There should be no errors when running the above command.

Note: This command is supposed to be a daemon, but for toying around, we'll keep it running on a terminal to
monitor the activity.

Now that the master is set, let's configure a minion on a VM.

Step 2 - Configuring The Minion VM

The Salt minion is going to run on a Virtual Machine. There are a lot of software options that let you run virtual
machines on a mac, But for this tutorial we're going to use VirtualBox. In addition to virtualBox, we will use Vagrant,
which allows you to create the base VM configuration.

Vagrant lets you build ready to use VM images, starting from an OS image and customizing it using *provisioners".
In our case, we'll use it to:

« Download the base Ubuntu image

« Install salt on that Ubuntu image (Salt is going to be the " “provisioner" for the VM).
+ Launch the VM

« SSH into the VM to debug

Stop the VM once you're done.

Install VirtualBox

Go get it here: https://www.virtualBox.org/wiki/Downloads (click on VirtualBox for macOS hosts => x86/amd64)

Install Vagrant

Go get it here: http://downloads.vagrantup.com/ and choose the latest version (1.3.5 at time of writing), then the
.dmg file. Double-click to install it. Make sure the vagrant command is found when run in the terminal. Type
vagrant. It should display a list of commands.

Create The Minion VM Folder

Create a folder in which you will store your minion's VM. In this tutorial, it's going to be a minion folder in the
$home directory.

cd Shome
mkdir minion

Initialize Vagrant

From the minion folder, type

vagrant 1init

This command creates a default Vagrantfile configuration file. This configuration file will be used to pass configura-
tion parameters to the Salt provisioner in Step 3.

2.4. Additional Installation Guides 39



https://www.virtualBox.org/wiki/Downloads
http://downloads.vagrantup.com/

Salt Documentation, Release 2017.7.8

Import Precise64 Ubuntu Box

vagrant box add precise64 http://files.vagrantup.com/precise64.box

Note: This box is added at the global Vagrant level. You only need to do it once as each VM will use this same file.

Modify the Vagrantfile

Modify ./minion/Vagrantfile to use th precise64 box. Change the config.vm.box line to:

’conﬁ'g.vm.box = "precise64" ‘

Uncomment the line creating a host-only IP. This is the ip of your minion (you can change it to something else if
that IP is already in use):

’conﬁ'g.vm.network :private_network, ip: "192.168.33.10" ‘

At this point you should have a VM that can run, although there won't be much in it. Let's check that.

Checking The VM

From the $home/minion folder type:

’vagrant up ‘

A log showing the VM booting should be present. Once it's done you'll be back to the terminal:

’ping 192.168.33.10 ‘

The VM should respond to your ping request.

Now log into the VM in ssh using Vagrant again:

’vagrant ssh ‘

You should see the shell prompt change to something similar to vagrant@precise64: ~$ meaning you're inside
the VM. From there, enter the following:

’p'ing 10.0.2.2 ‘

Note: That ip is the ip of your VM host (the macOS host). The number is a VirtualBox default and is displayed in
the log after the Vagrant ssh command. We'll use that IP to tell the minion where the Salt master is. Once you're
done, end the ssh session by typing exi t.

It's now time to connect the VM to the salt master

40 Chapter 2. Installation



Salt Documentation, Release 2017.7.8

Step 3 - Connecting Master and Minion

Creating The Minion Configuration File

Create the /etc/salt/minion file. In that file, put the following lines, giving the ID for this minion, and the IP
of the master:

master: 10.0.2.2
id: 'minionl’'
file_client: remote

Minions authenticate with the master using keys. Keys are generated automatically if you don't provide one and
can accept them later on. However, this requires accepting the minion key every time the minion is destroyed or
created (which could be quite often). A better way is to create those keys in advance, feed them to the minion, and
authorize them once.

Preseed minion keys

From the minion folder on your Mac run:

sudo salt-key --gen-keys=minionl

This should create two files: minion1.pem, and minion1.pub. Since those files have been created using sudo, but will
be used by vagrant, you need to change ownership:

sudo chown youruser:yourgroup minionl.pem
sudo chown youruser:yourgroup minionl.pub

Then copy the .pub file into the list of accepted minions:

sudo cp minionl.pub /etc/salt/pki/master/minions/minionl

Modify Vagrantfile to Use Salt Provisioner

Let's now modify the Vagrantfile used to provision the Salt VM. Add the following section in the Vagrantfile (note:
it should be at the same indentation level as the other properties):

# salt-vagrant config
config.vm.provision :salt do |salt|
salt.run_highstate = true

salt.minion_config = "/etc/salt/minion"
salt.minion_key = "./minionl.pem"
salt.minion_pub = "./minionl.pub"

end

Now destroy the vm and recreate it from the /minion folder:

vagrant destroy
vagrant up

If everything is fine you should see the following message:

"Bootstrapping Salt... (this may take a while)
Salt successfully configured and installed!"

2.4. Additional Installation Guides 41




Salt Documentation, Release 2017.7.8

Checking Master-Minion Communication

To make sure the master and minion are talking to each other, enter the following:

sudo salt '*' test.ping

You should see your minion answering the ping. It's now time to do some configuration.

Step 4 - Configure Services to Install On the Minion

In this step we'll use the Salt master to instruct our minion to install Nginx.

Checking the system's original state

First, make sure that an HTTP server is not installed on our minion. When opening a browser directed at
http://192.168.33.10/ You should get an error saying the site cannot be reached.

Initialize the top.sls file

System configuration is done in /srv/salt/top.sls (and subfiles/folders), and then applied by running the
state. apply function to have the Salt master order its minions to update their instructions and run the associated
commands.

First Create an empty file on your Salt master (macOS machine):

’ touch /srv/salt/top.sls

When the file is empty, or if no configuration is found for our minion an error is reported:

’sudo salt 'minionl' state.apply

This should return an error stating: No Top file or external nodes data matches found.

Create The Nginx Configuration

Now is finally the time to enter the real meat of our server's configuration. For this tutorial our minion will be treated
as a web server that needs to have Nginx installed.

Insert the following lines into /srv/salt/top.sls (which should current be empty).

base:
'minionl':
- bin.nginx

Now create /srv/salt/bin/nginx.s'ls containing the following:

nginx:
pkg.installed:
- name: nginx
service.running:
- enable: True
- reload: True

42 Chapter 2. Installation



Salt Documentation, Release 2017.7.8

Check Minion State

Finally, run the state. app ly function again:

sudo salt 'minionl' state.apply

You should see a log showing that the Nginx package has been installed and the service configured. To prove it,
open your browser and navigate to http://192.168.33.10/, you should see the standard Nginx welcome page.

Congratulations!
Where To Go From Here

A full description of configuration management within Salt (sls files among other things) is available here: http:
//docs.saltstack.com/en/latest/index.html#configuration-management

2.4.6 running salt as normal user tutorial

Before continuing make sure you have a working Salt installation by following the Installation and the configuration
instructions.

Stuck?

There are many ways to get help from the Salt community including our mailing list and our IRC channel #salt.

Running Salt functions as non root user

If you don't want to run salt cloud as root or even install it you can configure it to have a virtual root in your working
directory.

The salt system uses the salt.syspath module to find the variables

If you run the salt-build, it will generated in:

’ ./build/lib.linux-x86_64-2.7/salt/_syspaths.py

To generate it, run the command:

’python setup.py build

Copy the generated module into your salt directory

’cp ./build/lib.linux-x86_64-2.7/salt/_syspaths.py salt/_syspaths.py

Edit it to include needed variables and your new paths

# you need to edit this
ROOT_DIR = *your current dir* + '/salt/root'

# you need to edit this
INSTALL_DIR = xlocation of source codex

CONFIG_DIR = ROOT_DIR + '/etc/salt'
CACHE_DIR = ROOT_DIR + '/var/cache/salt'

2.4. Additional Installation Guides 43


http://192.168.33.10/
http://docs.saltstack.com/en/latest/index.html#configuration-management
http://docs.saltstack.com/en/latest/index.html#configuration-management
https://groups.google.com/forum/#!forum/salt-users
http://webchat.freenode.net/?channels=salt

Salt Documentation, Release 2017.7.8

SOCK_DIR = ROOT_DIR + '/var/run/salt'

SRV_ROOT_DIR= ROOT_DIR + '/srv'

BASE_FILE_ROOTS_DIR = ROOT_DIR + '/srv/salt'
BASE_PILLAR_ROOTS_DIR = ROOT_DIR + '/srv/pillar'
BASE_MASTER_ROOTS_DIR = ROOT_DIR + '/srv/salt-master'
LOGS_DIR = ROOT_DIR + '/var/log/salt'

PIDFILE_DIR = ROOT_DIR + '/var/run'

CLOUD_DIR = INSTALL_DIR + '/cloud'

BOOTSTRAP = CLOUD_DIR + '/deploy/bootstrap-salt.sh'

Create the directory structure

mkdir -p root/etc/salt root/var/cache/run root/run/salt root/srv
root/srv/salt root/srv/pillar root/srv/salt-master root/var/log/salt root/var/run

Populate the configuration files:

’cp -r conf/x root/etc/salt/

Edit your root/etc/salt/master configuration that is used by salt-cloud:

’USGI"Z *your user namex

Run like this:

’ PYTHONPATH="pwd" scripts/salt-cloud

2.4.7 Standalone Minion
Since the Salt minion contains such extensive functionality it can be useful to run it standalone. A standalone minion
can be used to do a number of things:

« Use salt-call commands on a system without connectivity to a master

« Masterless States, run states entirely from files local to the minion

Note: When running Salt in masterless mode, do not run the salt-minion daemon. Otherwise, it will attempt to
connect to a master and fail. The salt-call command stands on its own and does not need the salt-minion daemon.

Minion Configuration

Throughout this document there are several references to setting different options to configure a masterless Minion.
Salt Minions are easy to configure via a configuration file that is located, by default, in /etc/salt/minion. Note,
however, that on FreeBSD systems, the minion configuration file is located in /usr/local/etc/salt/minion.

You can learn more about minion configuration options in the Configuring the Salt Minion docs.

Telling Salt Call to Run Masterless

The salt-call command is used to run module functions locally on a minion instead of executing them from the
master. Normally the salt-call command checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for this data. To instruct the minion to

44 Chapter 2. Installation



Salt Documentation, Release 2017.7.8

not look for a master when running salt-call the file_client configuration option needs to be set. By default
the file_client is set to remote so that the minion knows that file server and pillar data are to be gathered
from the master. When setting the file_client option to Local the minion is configured to not gather this
data from the master.

file_client: local

Now the salt-call command will not look for a master and will assume that the local system has all of the file and
pillar resources.

Running States Masterless

The state system can be easily run without a Salt master, with all needed files local to the minion. To do this the
minion configuration file needs to be set up to know how to return file_roots information like the master. The
file_roots setting defaults to /srv/salt for the base environment just like on the master:

file_roots:
base:
- /srv/salt

Now set up the Salt State Tree, top file, and SLS modules in the same way that they would be set up on a master.
Now, with the file_client option set to Local and an available state tree then calls to functions in the state
module will use the information in the file_roots on the minion instead of checking in with the master.

Remember that when creating a state tree on a minion there are no syntax or path changes needed, SLS modules
written to be used from a master do not need to be modified in any way to work with a minion.

This makes it easy to " “script" deployments with Salt states without having to set up a master, and allows for these
SLS modules to be easily moved into a Salt master as the deployment grows.

The declared state can now be executed with:

’ salt-call state.apply

Or the salt-call command can be executed with the ——local flag, this makes it unnecessary to change the config-
uration file:

’salt—call state.apply --local

External Pillars

External pillars are supported when running in masterless mode.

2.4.8 Salt Masterless Quickstart
Running a masterless salt-minion lets you use Salt's configuration management for a single machine without calling
out to a Salt master on another machine.

Since the Salt minion contains such extensive functionality it can be useful to run it standalone. A standalone minion
can be used to do a number of things:

« Stand up a master server via States (Salting a Salt Master)

« Use salt-call commands on a system without connectivity to a master

2.4. Additional Installation Guides 45



Salt Documentation, Release 2017.7.8

« Masterless States, run states entirely from files local to the minion

It is also useful for testing out state trees before deploying to a production setup.

Bootstrap Salt Minion

The salt-bootstrap script makes bootstrapping a server with Salt simple for any OS with a Bourne shell:

curl -L https://bootstrap.saltstack.com -o bootstrap_salt.sh
sudo sh bootstrap_salt.sh

See the salt-bootstrap documentation for other one liners. When using Vagrant to test out salt, the Vagrant salt
provisioner will provision the VM for you.

Telling Salt to Run Masterless

To instruct the minion to not look for a master, the file_client configuration option needs to be set in the
minion configuration file. By default the file_client is set to remote so that the minion gathers file server
and pillar data from the salt master. When setting the file_client option to Llocal the minion is configured to
not gather this data from the master.

file_client: local

Now the salt minion will not look for a master and will assume that the local system has all of the file and pillar
resources.

Configuration which resided in the master configuration (e.g. /etc/salt/master)should be moved to the minion
configuration since the minion does not read the master configuration.

Note: When running Salt in masterless mode, do not run the salt-minion daemon. Otherwise, it will attempt to
connect to a master and fail. The salt-call command stands on its own and does not need the salt-minion daemon.

Create State Tree
Following the successful installation of a salt-minion, the next step is to create a state tree, which is where the SLS
files that comprise the possible states of the minion are stored.

The following example walks through the steps necessary to create a state tree that ensures that the server has the
Apache webserver installed.

Note: For a complete explanation on Salt States, see the tutorial.

1. Create the top.sls file:
/srv/salt/top.sls:

base:
I*Ic

- webserver

2. Create the webserver state tree:

/srv/salt/webserver.sls:

46 Chapter 2. Installation



https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap
http://www.vagrantup.com/
http://docs.vagrantup.com/v2/provisioning/salt.html
http://docs.vagrantup.com/v2/provisioning/salt.html
http://docs.saltstack.com/en/latest/topics/tutorials/states_pt1.html

Salt Documentation, Release 2017.7.8

apache: # ID declaration
pkg: # state declaration
- 1installed # function declaration

Note: The apache package has different names on different platforms, for instance on Debian/Ubuntu it is apache2,
on Fedora/RHEL it is httpd and on Arch it is apache

The only thing left is to provision our minion using salt-call.

Salt-call

The salt-call command is used to run remote execution functions locally on a minion instead of executing them from
the master. Normally the salt-call command checks into the master to retrieve file server and pillar data, but when
running standalone salt-call needs to be instructed to not check the master for this data:

salt-call --local state.apply

The --local flag tells the salt-minion to look for the state tree in the local file system and not to contact a Salt
Master for instructions.

To provide verbose output, use -1 debug:

salt-call --local state.apply -1 debug

The minion first examines the top . ss file and determines that it is a part of the group matched by * glob and that
the webserver SLS should be applied.

It then examines the webserver . s'ls file and finds the apache state, which installs the Apache package.

The minion should now have Apache installed, and the next step is to begin learning how to write more complex
states.

2.5 Dependencies

Salt should run on any Unix-like platform so long as the dependencies are met.
« Python 2.7 >= 2.7 <3.0
« msgpack-python - High-performance message interchange format
« YAML - Python YAML bindings
« Jinja2 - parsing Salt States (configurable in the master settings)
« MarkupSafe - Implements a XML/HTML/XHTML Markup safe string for Python

« apache-libcloud - Python lib for interacting with many of the popular cloud service providers using a unified
API

« Requests - HTTP library
« Tornado - Web framework and asynchronous networking library
« futures - Backport of the concurrent.futures package from Python 3.2

Depending on the chosen Salt transport, ZeroMQ or RAET, dependencies vary:

2.5. Dependencies 47



http://python.org/download/
https://pypi.python.org/pypi/msgpack-python/
http://pyyaml.org/
http://jinja.pocoo.org/
https://pypi.python.org/pypi/MarkupSafe
http://libcloud.apache.org
http://docs.python-requests.org/en/latest
http://www.tornadoweb.org/en/stable/
https://github.com/agronholm/pythonfutures
http://zeromq.org/
https://github.com/saltstack/raet

Salt Documentation, Release 2017.7.8

o ZeroMQ:
- ZeroMQ >=3.2.0
— pyzmgq >= 2.2.0 - ZeroMQ Python bindings
- PyCrypto - The Python cryptography toolkit
+ RAET:
— libnacl - Python bindings to libsodium
— ioflo - The flo programming interface raet and salt-raet is built on
— RAET - The worlds most awesome UDP protocol

Salt defaults to the ZeroMQ transport, and the choice can be made at install time, for example:

’python setup.py --salt-transport=raet install

This way, only the required dependencies are pulled by the setup script if need be.

If installing using pip, the ——salt-transport install option can be provided like:

’p'ip install --install-option="--salt-transport=raet" salt

Note: Salt does not bundle dependencies that are typically distributed as part of the base OS. If you have unmet
dependencies and are using a custom or minimal installation, you might need to install some additional packages
from your OS vendor.

2.6 Optional Dependencies

« mako - an optional parser for Salt States (configurable in the master settings)

+ gcc - dynamic Cython module compiling

2.7 Upgrading Salt

When upgrading Salt, the master(s) should always be upgraded first. Backward compatibility for minions running
newer versions of salt than their masters is not guaranteed.

Whenever possible, backward compatibility between new masters and old minions will be preserved. Generally, the
only exception to this policy is in case of a security vulnerability.

See also:

Installing Salt for development and contributing to the project.

2.8 Building Packages using Salt Pack

Salt-pack is an open-source package builder for most commonly used Linux platforms, for example: Redhat/CentOS
and Debian/Ubuntu families, utilizing SaltStack states and execution modules to build Salt and a specified set of
dependencies, from which a platform specific repository can be built.

48 Chapter 2. Installation


http://zeromq.org/
https://github.com/zeromq/pyzmq
https://www.dlitz.net/software/pycrypto/
https://github.com/saltstack/libnacl
https://github.com/jedisct1/libsodium
https://github.com/ioflo/ioflo
https://github.com/saltstack/raet
http://zeromq.org/
http://www.makotemplates.org/
http://cython.org/

Salt Documentation, Release 2017.7.8

https://github.com/saltstack/salt-pack

2.8. Building Packages using Salt Pack 49


https://github.com/saltstack/salt-pack

Salt Documentation, Release 2017.7.8

50 Chapter 2. Installation



CHAPTER 3

Configuring Salt

This section explains how to configure user access, view and store job results, secure and troubleshoot, and how to
perform many other administrative tasks.

3.1 Configuring the Salt Master

The Salt system is amazingly simple and easy to configure, the two components of the Salt system each have a
respective configuration file. The salt-master is configured via the master configuration file, and the salt-
minion is configured via the minion configuration file.

See also:
Example master configuration file.

The configuration file for the salt-master is located at /etc/salt/master by default. A notable exception is
FreeBSD, where the configuration file is located at /usr/local/etc/salt. The available options are as follows:

3.1.1 Primary Master Configuration

interface

Default: 0.0.0. 0 (all interfaces)

The local interface to bind to, must be an IP address.

interface: 192.168.0.1

ipv6

Default: False

Whether the master should listen for IPv6 connections. If this is set to True, the interface option must be adjusted
too (for example: interface: '::')

ipv6e: True

51



Salt Documentation, Release 2017.7.8

publish_port

Default: 4505

The network port to set up the publication interface.

publish_port: 4505

master_id

Default: None

The id to be passed in the publish job to minions. This is used for MultiSyndics to return the job to the requesting
master.

Note: This must be the same string as the syndic is configured with.

master_id: MasterOfMaster

user

Default: root

The user to run the Salt processes

user: root

ret_port

Default: 4506

The port used by the return server, this is the server used by Salt to receive execution returns and command execu-
tions.

ret_port: 4506

pidfile

Default: /var/run/salt-master.pid

Specify the location of the master pidfile.

pidfile: /var/run/salt-master.pid

root_d1ir

Default: /

The system root directory to operate from, change this to make Salt run from an alternative root.

52 Chapter 3. Configuring Salt



Salt Documentation, Release 2017.7.8

root_dir: /

Note: This directory is prepended to the following options: pki_dir, cachedir, sock_dir, log_f1ile,

autosign_file,autoreject_file,pidfile.

conf_file

Default: /etc/salt/master

The path to the master's configuration file.

conf_file: /etc/salt/master

pki_dir

Default: /etc/salt/pki/master

The directory to store the pki authentication keys.

pki_dir: /etc/salt/pki/master

extension_modules

Changed in version 2016.3.0: The default location for this directory has been moved. Prior to this version, the location
was a directory named extmods in the Salt cachedir (on most platforms, /var/cache/salt/extmods). It has
been moved into the master cachedir (on most platforms, /var/cache/salt/master/extmods).

Directory for custom modules. This directory can contain subdirectories for each of Salt's module types such as
runners, output, wheel, modules, states, returners, engines, utils, etc. This path is appended to

root_dir.

extension_modules: /root/salt_extmods

extmod_whitelist/extmod_blacklist

New in version 2017.7.0.

By using this dictionary, the modules that are synced to the master's extmod cache using saltutil.sync_* can be limited.
If nothing is set to a specific type, then all modules are accepted. To block all modules of a specific type, whitelist an

empty list.
extmod_whitelist:
modules:
- custom_module
engines:
- custom_engine
pillars: []

extmod_blacklist:
modules:
- specific_module

3.1. Configuring the Salt Master

53




Salt Documentation, Release 2017.7.8

Valid options:
« modules
« states
« grains
« renderers
e returners
« output
« proxy
« runners
o wheel
» engines
« queues
« pillar
« utils
« sdb
« cache
« clouds
 tops

* roster

module_dirs

Default: []

Like extension_modules, but a list of extra directories to search for Salt modules.

module_dirs:
- /var/cache/salt/minion/extmods

cachedir

Default: /var/cache/salt/master
The location used to store cache information, particularly the job information for executed salt commands.

This directory may contain sensitive data and should be protected accordingly.

cachedir: /var/cache/salt/master

verify_env

Default: True

Verify and set permissions on configuration directories at startup.

54 Chapter 3. Configuring Salt




Salt Documentation, Release 2017.7.8

verify_env: True

keep_jobs

Default: 24

Set the number of hours to keep old job information. Note that setting this option to © disables the cache cleaner.

keep_jobs: 24

gather_job_timeout

New in version 2014.7.0.
Default: 10

The number of seconds to wait when the client is requesting information about running jobs.

gather_job_timeout: 10

timeout

Default: 5

Set the default timeout for the salt command and api.

loop_tinterval

Default: 60

The loop_interval option controls the seconds for the master's maintenance process check cycle. This process updates
file server backends, cleans the job cache and executes the scheduler.

output

Default: nested

Set the default outputter used by the salt command.

outputter_dirs

Default: []

A list of additional directories to search for salt outputters in.

outputter_dirs: []

3.1. Configuring the Salt Master 55



Salt Documentation, Release 2017.7.8

output_file

Default: None

Set the default output file used by the salt command. Default is to output to the CLI and not to a file. Functions the
same way as the *"--out-file" CLI option, only sets this to a single file for all salt commands.

output_file: /path/output/file

show_timeout

Default: True

Tell the client to show minions that have timed out.

show_timeout: True

show_jid

Default: False

Tell the client to display the jid when a job is published.

show_jid: False

color

Default: True

By default output is colored, to disable colored output set the color value to False.

color: False

cli_summary

Default: False

When set to True, displays a summary of the number of minions targeted, the number of minions returned, and
the number of minions that did not return.

cli_summary: False

sock_dir

Default: /var/run/salt/master

Set the location to use for creating Unix sockets for master process communication.

sock_dir: /var/run/salt/master

56 Chapter 3. Configuring Salt



Salt Documentation, Release 2017.7.8

enable_gpu_grains

Default: False

Enable GPU hardware data for your master. Be aware that the master can take a while to start up when Ispci and/or
dmidecode is used to populate the grains for the master.

enable_gpu_grains: True

job_cache

Default: True

The master maintains a temporary job cache. While this is a great addition, it can be a burden on the master for
larger deployments (over 5000 minions). Disabling the job cache will make previously executed jobs unavailable to
the jobs system and is not generally recommended. Normally it is wise to make sure the master has access to a faster
IO system or a tmpfs is mounted to the jobs dir.

job_cache: True

Note: Setting the job_cache to False will not cache minion returns, but the JID directory for each job is still
created. The creation of the JID directories is necessary because Salt uses those directories to check for JID colli-
sions. By setting this option to False, the job cache directory, which is /var/cache/salt/master/jobs/
by default, will be smaller, but the JID directories will still be present.

Note that the keep_jobs option can be set to a lower value, such as 1, to limit the number of hours jobs are stored
in the job cache. (The default is 24 hours.)

Please see the Managing the Job Cache documentation for more information.

minion_data_cache

Default: True

The minion data cache is a cache of information about the minions stored on the master, this information is primarily
the pillar, grains and mine data. The data is cached via the cache subsystem in the Master cachedir under the name
of the minion or in a supported database. The data is used to predetermine what minions are expected to reply from
executions.

minion_data_cache: True

cache

Default: localfs

Cache subsystem module to use for minion data cache.

cache: consul

3.1. Configuring the Salt Master 57



Salt Documentation, Release 2017.7.8

memcache_expire_seconds

Default: 0

Memcache is an additional cache layer that keeps a limited amount of data fetched from the minion data cache for a
limited period of time in memory that makes cache operations faster. It doesn't make much sense for the Localfs
cache driver but helps for more complex drivers like consu'l.

This option sets the memcache items expiration time. By default is set to 0 that disables the memcache.

memcache_expire_seconds: 30

memcache_max_items

Default: 1024

Set memcache limit in items that are bank-key pairs. Le the list of minion_0/data, minion_0/mine, minion_1/data
contains 3 items. This value depends on the count of minions usually targeted in your environment. The best one
could be found by analyzing the cache log with memcache_debug enabled.

memcache_max_items: 1024

memcache_full_cleanup

Default: False

If cache storage got full, i.e. the items count exceeds the memcache_max_1items value, memcache cleans up it's
storage. If this option set to False memcache removes the only one oldest value from it's storage. If this set set to
True memcache removes all the expired items and also removes the oldest one if there are no expired items.

memcache_full_cleanup: True

memcache_debug

Default: False

Enable collecting the memcache stats and log it on debug log level. If enabled memcache collect information about
how many fetch calls has been done and how many of them has been hit by memcache. Also it outputs the rate
value that is the result of division of the first two values. This should help to choose right values for the expiration
time and the cache size.

memcache_debug: True

ext_job_cache

Default: ''

Used to specify a default returner for all minions. When this option is set, the specified returner needs to be properly
configured and the minions will always default to sending returns to this returner. This will also disable the local
job cache on the master.

ext_job_cache: redis

58 Chapter 3. Configuring Salt



Salt Documentation, Release 2017.7.8

event_return

New in version 2015.5.0.
Default: "'

Specify the returner(s) to use to log events. Each returner may have installation and configuration requirements.
Read the returner's documentation.

Note: Not all returners support event returns. Verify that a returner has an event_return() function before
configuring this option with a returner.

event_return:
- syslog
- splunk

event_return_queue

New in version 2015.5.0.
Default: 0

On busy systems, enabling event_returns can cause a considerable load on the storage system for returners. Events
can be queued on the master and stored in a batched fashion using a single transaction for multiple events. By
default, events are not queued.

event_return_queue: 0

event_return_whitelist

New in version 2015.5.0.
Default: []
Only return events matching tags in a whitelist.

Changed in version 2016.11.0: Supports glob matching patterns.

event_return_whitelist:
- salt/master/a_tag
- salt/run/*/ret

event_return_blacklist

New in version 2015.5.0.
Default: []
Store all event returns _except_ the tags in a blacklist.

Changed in version 2016.11.0: Supports glob matching patterns.

event_return_blacklist:
- salt/master/not_this_tag
- salt/wheel/*/ret

3.1. Configuring the Salt Master 59




Salt Documentation, Release 2017.7.8

max_event_size

New in version 2014.7.0.
Default: 1048576

Passing very large events can cause the minion to consume large amounts of memory. This value tunes the maximum
size of a message allowed onto the master event bus. The value is expressed in bytes.

max_event_size: 1048576

master_job_cache

New in version 2014.7.0.
Default: local_cache

Specify the returner to use for the job cache. The job cache will only be interacted with from the salt master and
therefore does not need to be accessible from the minions.

master_job_cache: redis

job_cache_store_endtime

New in version 2015.8.0.
Default: False

Specify whether the Salt Master should store end times for jobs as returns come in.

job_cache_store_endtime