Processing math: 100%

ML - Features

This section covers algorithms for working with features, roughly divided into these groups:

Table of Contents

Feature Extractors

TF-IDF (HashingTF and IDF)

Term Frequency-Inverse Document Frequency (TF-IDF) is a common text pre-processing step. In Spark ML, TF-IDF is separate into two parts: TF (+hashing) and IDF.

TF: HashingTF is a Transformer which takes sets of terms and converts those sets into fixed-length feature vectors. In text processing, a “set of terms” might be a bag of words. The algorithm combines Term Frequency (TF) counts with the hashing trick for dimensionality reduction.

IDF: IDF is an Estimator which fits on a dataset and produces an IDFModel. The IDFModel takes feature vectors (generally created from HashingTF) and scales each column. Intuitively, it down-weights columns which appear frequently in a corpus.

Please refer to the MLlib user guide on TF-IDF for more details on Term Frequency and Inverse Document Frequency. For API details, refer to the HashingTF API docs and the IDF API docs.

In the following code segment, we start with a set of sentences. We split each sentence into words using Tokenizer. For each sentence (bag of words), we use HashingTF to hash the sentence into a feature vector. We use IDF to rescale the feature vectors; this generally improves performance when using text as features. Our feature vectors could then be passed to a learning algorithm.

import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}

val sentenceData = sqlContext.createDataFrame(Seq(
  (0, "Hi I heard about Spark"),
  (0, "I wish Java could use case classes"),
  (1, "Logistic regression models are neat")
)).toDF("label", "sentence")
val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val wordsData = tokenizer.transform(sentenceData)
val hashingTF = new HashingTF().setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20)
val featurizedData = hashingTF.transform(wordsData)
val idf = new IDF().setInputCol("rawFeatures").setOutputCol("features")
val idfModel = idf.fit(featurizedData)
val rescaledData = idfModel.transform(featurizedData)
rescaledData.select("features", "label").take(3).foreach(println)
import com.google.common.collect.Lists;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.HashingTF;
import org.apache.spark.ml.feature.IDF;
import org.apache.spark.ml.feature.Tokenizer;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

JavaRDD<Row> jrdd = jsc.parallelize(Lists.newArrayList(
  RowFactory.create(0, "Hi I heard about Spark"),
  RowFactory.create(0, "I wish Java could use case classes"),
  RowFactory.create(1, "Logistic regression models are neat")
));
StructType schema = new StructType(new StructField[]{
  new StructField("label", DataTypes.DoubleType, false, Metadata.empty()),
  new StructField("sentence", DataTypes.StringType, false, Metadata.empty())
});
DataFrame sentenceData = sqlContext.createDataFrame(jrdd, schema);
Tokenizer tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words");
DataFrame wordsData = tokenizer.transform(sentenceData);
int numFeatures = 20;
HashingTF hashingTF = new HashingTF()
  .setInputCol("words")
  .setOutputCol("rawFeatures")
  .setNumFeatures(numFeatures);
DataFrame featurizedData = hashingTF.transform(wordsData);
IDF idf = new IDF().setInputCol("rawFeatures").setOutputCol("features");
IDFModel idfModel = idf.fit(featurizedData);
DataFrame rescaledData = idfModel.transform(featurizedData);
for (Row r : rescaledData.select("features", "label").take(3)) {
  Vector features = r.getAs(0);
  Double label = r.getDouble(1);
  System.out.println(features);
}
from pyspark.ml.feature import HashingTF, IDF, Tokenizer

sentenceData = sqlContext.createDataFrame([
  (0, "Hi I heard about Spark"),
  (0, "I wish Java could use case classes"),
  (1, "Logistic regression models are neat")
], ["label", "sentence"])
tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
wordsData = tokenizer.transform(sentenceData)
hashingTF = HashingTF(inputCol="words", outputCol="rawFeatures", numFeatures=20)
featurizedData = hashingTF.transform(wordsData)
idf = IDF(inputCol="rawFeatures", outputCol="features")
idfModel = idf.fit(featurizedData)
rescaledData = idfModel.transform(featurizedData)
for features_label in rescaledData.select("features", "label").take(3):
  print(features_label)

Word2Vec

Word2Vec is an Estimator which takes sequences of words that represents documents and trains a Word2VecModel. The model is a Map(String, Vector) essentially, which maps each word to an unique fix-sized vector. The Word2VecModel transforms each documents into a vector using the average of all words in the document, which aims to other computations of documents such as similarity calculation consequencely. Please refer to the MLlib user guide on Word2Vec for more details on Word2Vec.

Word2Vec is implemented in Word2Vec. In the following code segment, we start with a set of documents, each of them is represented as a sequence of words. For each document, we transform it into a feature vector. This feature vector could then be passed to a learning algorithm.

import org.apache.spark.ml.feature.Word2Vec

// Input data: Each row is a bag of words from a sentence or document.
val documentDF = sqlContext.createDataFrame(Seq(
  "Hi I heard about Spark".split(" "),
  "I wish Java could use case classes".split(" "),
  "Logistic regression models are neat".split(" ")
).map(Tuple1.apply)).toDF("text")

// Learn a mapping from words to Vectors.
val word2Vec = new Word2Vec()
  .setInputCol("text")
  .setOutputCol("result")
  .setVectorSize(3)
  .setMinCount(0)
val model = word2Vec.fit(documentDF)
val result = model.transform(documentDF)
result.select("result").take(3).foreach(println)
import com.google.common.collect.Lists;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.*;

JavaSparkContext jsc = ...
SQLContext sqlContext = ...

// Input data: Each row is a bag of words from a sentence or document.
JavaRDD<Row> jrdd = jsc.parallelize(Lists.newArrayList(
  RowFactory.create(Lists.newArrayList("Hi I heard about Spark".split(" "))),
  RowFactory.create(Lists.newArrayList("I wish Java could use case classes".split(" "))),
  RowFactory.create(Lists.newArrayList("Logistic regression models are neat".split(" ")))
));
StructType schema = new StructType(new StructField[]{
  new StructField("text", new ArrayType(DataTypes.StringType, true), false, Metadata.empty())
});
DataFrame documentDF = sqlContext.createDataFrame(jrdd, schema);

// Learn a mapping from words to Vectors.
Word2Vec word2Vec = new Word2Vec()
  .setInputCol("text")
  .setOutputCol("result")
  .setVectorSize(3)
  .setMinCount(0);
Word2VecModel model = word2Vec.fit(documentDF);
DataFrame result = model.transform(documentDF);
for (Row r: result.select("result").take(3)) {
  System.out.println(r);
}
from pyspark.ml.feature import Word2Vec

# Input data: Each row is a bag of words from a sentence or document.
documentDF = sqlContext.createDataFrame([
  ("Hi I heard about Spark".split(" "), ),
  ("I wish Java could use case classes".split(" "), ),
  ("Logistic regression models are neat".split(" "), )
], ["text"])
# Learn a mapping from words to Vectors.
word2Vec = Word2Vec(vectorSize=3, minCount=0, inputCol="text", outputCol="result")
model = word2Vec.fit(documentDF)
result = model.transform(documentDF)
for feature in result.select("result").take(3):
  print(feature)

Feature Transformers

Tokenizer

Tokenization is the process of taking text (such as a sentence) and breaking it into individual terms (usually words). A simple Tokenizer class provides this functionality. The example below shows how to split sentences into sequences of words.

Note: A more advanced tokenizer is provided via RegexTokenizer.

import org.apache.spark.ml.feature.Tokenizer

val sentenceDataFrame = sqlContext.createDataFrame(Seq(
  (0, "Hi I heard about Spark"),
  (0, "I wish Java could use case classes"),
  (1, "Logistic regression models are neat")
)).toDF("label", "sentence")
val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val wordsDataFrame = tokenizer.transform(sentenceDataFrame)
wordsDataFrame.select("words", "label").take(3).foreach(println)
import com.google.common.collect.Lists;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.Tokenizer;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

JavaRDD<Row> jrdd = jsc.parallelize(Lists.newArrayList(
  RowFactory.create(0, "Hi I heard about Spark"),
  RowFactory.create(0, "I wish Java could use case classes"),
  RowFactory.create(1, "Logistic regression models are neat")
));
StructType schema = new StructType(new StructField[]{
  new StructField("label", DataTypes.DoubleType, false, Metadata.empty()),
  new StructField("sentence", DataTypes.StringType, false, Metadata.empty())
});
DataFrame sentenceDataFrame = sqlContext.createDataFrame(jrdd, schema);
Tokenizer tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words");
DataFrame wordsDataFrame = tokenizer.transform(sentenceDataFrame);
for (Row r : wordsDataFrame.select("words", "label").take(3)) {
  java.util.List<String> words = r.getList(0);
  for (String word : words) System.out.print(word + " ");
  System.out.println();
}
from pyspark.ml.feature import Tokenizer

sentenceDataFrame = sqlContext.createDataFrame([
  (0, "Hi I heard about Spark"),
  (0, "I wish Java could use case classes"),
  (1, "Logistic regression models are neat")
], ["label", "sentence"])
tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
wordsDataFrame = tokenizer.transform(sentenceDataFrame)
for words_label in wordsDataFrame.select("words", "label").take(3):
  print(words_label)

Binarizer

Binarization is the process of thresholding numerical features to binary features. As some probabilistic estimators make assumption that the input data is distributed according to Bernoulli distribution, a binarizer is useful for pre-processing the input data with continuous numerical features.

A simple Binarizer class provides this functionality. Besides the common parameters of inputCol and outputCol, Binarizer has the parameter threshold used for binarizing continuous numerical features. The features greater than the threshold, will be binarized to 1.0. The features equal to or less than the threshold, will be binarized to 0.0. The example below shows how to binarize numerical features.

import org.apache.spark.ml.feature.Binarizer
import org.apache.spark.sql.DataFrame

val data = Array(
  (0, 0.1),
  (1, 0.8),
  (2, 0.2)
)
val dataFrame: DataFrame = sqlContext.createDataFrame(data).toDF("label", "feature")

val binarizer: Binarizer = new Binarizer()
  .setInputCol("feature")
  .setOutputCol("binarized_feature")
  .setThreshold(0.5)

val binarizedDataFrame = binarizer.transform(dataFrame)
val binarizedFeatures = binarizedDataFrame.select("binarized_feature")
binarizedFeatures.collect().foreach(println)
import com.google.common.collect.Lists;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.Binarizer;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

JavaRDD<Row> jrdd = jsc.parallelize(Lists.newArrayList(
  RowFactory.create(0, 0.1),
  RowFactory.create(1, 0.8),
  RowFactory.create(2, 0.2)
));
StructType schema = new StructType(new StructField[]{
  new StructField("label", DataTypes.DoubleType, false, Metadata.empty()),
  new StructField("feature", DataTypes.DoubleType, false, Metadata.empty())
});
DataFrame continuousDataFrame = jsql.createDataFrame(jrdd, schema);
Binarizer binarizer = new Binarizer()
  .setInputCol("feature")
  .setOutputCol("binarized_feature")
  .setThreshold(0.5);
DataFrame binarizedDataFrame = binarizer.transform(continuousDataFrame);
DataFrame binarizedFeatures = binarizedDataFrame.select("binarized_feature");
for (Row r : binarizedFeatures.collect()) {
  Double binarized_value = r.getDouble(0);
  System.out.println(binarized_value);
}
from pyspark.ml.feature import Binarizer

continuousDataFrame = sqlContext.createDataFrame([
  (0, 0.1),
  (1, 0.8),
  (2, 0.2)
], ["label", "feature"])
binarizer = Binarizer(threshold=0.5, inputCol="feature", outputCol="binarized_feature")
binarizedDataFrame = binarizer.transform(continuousDataFrame)
binarizedFeatures = binarizedDataFrame.select("binarized_feature")
for binarized_feature, in binarizedFeatures.collect():
  print(binarized_feature)

PolynomialExpansion

Polynomial expansion is the process of expanding your features into a polynomial space, which is formulated by an n-degree combination of original dimensions. A PolynomialExpansion class provides this functionality. The example below shows how to expand your features into a 3-degree polynomial space.

import org.apache.spark.ml.feature.PolynomialExpansion
import org.apache.spark.mllib.linalg.Vectors

val data = Array(
  Vectors.dense(-2.0, 2.3),
  Vectors.dense(0.0, 0.0),
  Vectors.dense(0.6, -1.1)
)
val df = sqlContext.createDataFrame(data.map(Tuple1.apply)).toDF("features")
val polynomialExpansion = new PolynomialExpansion()
  .setInputCol("features")
  .setOutputCol("polyFeatures")
  .setDegree(3)
val polyDF = polynomialExpansion.transform(df)
polyDF.select("polyFeatures").take(3).foreach(println)
import com.google.common.collect.Lists;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.VectorUDT;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

JavaSparkContext jsc = ...
SQLContext jsql = ...
PolynomialExpansion polyExpansion = new PolynomialExpansion()
  .setInputCol("features")
  .setOutputCol("polyFeatures")
  .setDegree(3);
JavaRDD<Row> data = jsc.parallelize(Lists.newArrayList(
  RowFactory.create(Vectors.dense(-2.0, 2.3)),
  RowFactory.create(Vectors.dense(0.0, 0.0)),
  RowFactory.create(Vectors.dense(0.6, -1.1))
));
StructType schema = new StructType(new StructField[] {
  new StructField("features", new VectorUDT(), false, Metadata.empty()),
});
DataFrame df = jsql.createDataFrame(data, schema);
DataFrame polyDF = polyExpansion.transform(df);
Row[] row = polyDF.select("polyFeatures").take(3);
for (Row r : row) {
  System.out.println(r.get(0));
}
from pyspark.ml.feature import PolynomialExpansion
from pyspark.mllib.linalg import Vectors

df = sqlContext.createDataFrame(
  [(Vectors.dense([-2.0, 2.3]), ),
  (Vectors.dense([0.0, 0.0]), ),
  (Vectors.dense([0.6, -1.1]), )],
  ["features"])
px = PolynomialExpansion(degree=2, inputCol="features", outputCol="polyFeatures")
polyDF = px.transform(df)
for expanded in polyDF.select("polyFeatures").take(3):
  print(expanded)

StringIndexer

StringIndexer encodes a string column of labels to a column of label indices. The indices are in [0, numLabels), ordered by label frequencies. So the most frequent label gets index 0. If the input column is numeric, we cast it to string and index the string values.

Examples

Assume that we have the following DataFrame with columns id and category:

 id | category
----|----------
 0  | a
 1  | b
 2  | c
 3  | a
 4  | a
 5  | c

category is a string column with three labels: “a”, “b”, and “c”. Applying StringIndexer with category as the input column and categoryIndex as the output column, we should get the following:

 id | category | categoryIndex
----|----------|---------------
 0  | a        | 0.0
 1  | b        | 2.0
 2  | c        | 1.0
 3  | a        | 0.0
 4  | a        | 0.0
 5  | c        | 1.0

“a” gets index 0 because it is the most frequent, followed by “c” with index 1 and “b” with index 2.

StringIndexer takes an input column name and an output column name.

import org.apache.spark.ml.feature.StringIndexer

val df = sqlContext.createDataFrame(
  Seq((0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c"))
).toDF("id", "category")
val indexer = new StringIndexer()
  .setInputCol("category")
  .setOutputCol("categoryIndex")
val indexed = indexer.fit(df).transform(df)
indexed.show()

StringIndexer takes an input column name and an output column name.

import java.util.Arrays;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.StringIndexer;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import static org.apache.spark.sql.types.DataTypes.*;

JavaRDD<Row> jrdd = jsc.parallelize(Arrays.asList(
  RowFactory.create(0, "a"),
  RowFactory.create(1, "b"),
  RowFactory.create(2, "c"),
  RowFactory.create(3, "a"),
  RowFactory.create(4, "a"),
  RowFactory.create(5, "c")
));
StructType schema = new StructType(new StructField[] {
  createStructField("id", DoubleType, false),
  createStructField("category", StringType, false)
});
DataFrame df = sqlContext.createDataFrame(jrdd, schema);
StringIndexer indexer = new StringIndexer()
  .setInputCol("category")
  .setOutputCol("categoryIndex");
DataFrame indexed = indexer.fit(df).transform(df);
indexed.show();

StringIndexer takes an input column name and an output column name.

from pyspark.ml.feature import StringIndexer

df = sqlContext.createDataFrame(
    [(0, "a"), (1, "b"), (2, "c"), (3, "a"), (4, "a"), (5, "c")],
    ["id", "category"])
indexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
indexed = indexer.fit(df).transform(df)
indexed.show()

OneHotEncoder

One-hot encoding maps a column of label indices to a column of binary vectors, with at most a single one-value. This encoding allows algorithms which expect continuous features, such as Logistic Regression, to use categorical features

import org.apache.spark.ml.feature.{OneHotEncoder, StringIndexer}

val df = sqlContext.createDataFrame(Seq(
  (0, "a"),
  (1, "b"),
  (2, "c"),
  (3, "a"),
  (4, "a"),
  (5, "c")
)).toDF("id", "category")

val indexer = new StringIndexer()
  .setInputCol("category")
  .setOutputCol("categoryIndex")
  .fit(df)
val indexed = indexer.transform(df)

val encoder = new OneHotEncoder().setInputCol("categoryIndex").
  setOutputCol("categoryVec")
val encoded = encoder.transform(indexed)
encoded.select("id", "categoryVec").foreach(println)
import com.google.common.collect.Lists;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.OneHotEncoder;
import org.apache.spark.ml.feature.StringIndexer;
import org.apache.spark.ml.feature.StringIndexerModel;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

JavaRDD<Row> jrdd = jsc.parallelize(Lists.newArrayList(
    RowFactory.create(0, "a"),
    RowFactory.create(1, "b"),
    RowFactory.create(2, "c"),
    RowFactory.create(3, "a"),
    RowFactory.create(4, "a"),
    RowFactory.create(5, "c")
));
StructType schema = new StructType(new StructField[]{
    new StructField("id", DataTypes.DoubleType, false, Metadata.empty()),
    new StructField("category", DataTypes.StringType, false, Metadata.empty())
});
DataFrame df = sqlContext.createDataFrame(jrdd, schema);
StringIndexerModel indexer = new StringIndexer()
  .setInputCol("category")
  .setOutputCol("categoryIndex")
  .fit(df);
DataFrame indexed = indexer.transform(df);

OneHotEncoder encoder = new OneHotEncoder()
  .setInputCol("categoryIndex")
  .setOutputCol("categoryVec");
DataFrame encoded = encoder.transform(indexed);
from pyspark.ml.feature import OneHotEncoder, StringIndexer

df = sqlContext.createDataFrame([
  (0, "a"),
  (1, "b"),
  (2, "c"),
  (3, "a"),
  (4, "a"),
  (5, "c")
], ["id", "category"])

stringIndexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
model = stringIndexer.fit(df)
indexed = model.transform(df)
encoder = OneHotEncoder(includeFirst=False, inputCol="categoryIndex", outputCol="categoryVec")
encoded = encoder.transform(indexed)

VectorIndexer

VectorIndexer helps index categorical features in datasets of Vectors. It can both automatically decide which features are categorical and convert original values to category indices. Specifically, it does the following:

  1. Take an input column of type Vector and a parameter maxCategories.
  2. Decide which features should be categorical based on the number of distinct values, where features with at most maxCategories are declared categorical.
  3. Compute 0-based category indices for each categorical feature.
  4. Index categorical features and transform original feature values to indices.

Indexing categorical features allows algorithms such as Decision Trees and Tree Ensembles to treat categorical features appropriately, improving performance.

Please refer to the VectorIndexer API docs for more details.

In the example below, we read in a dataset of labeled points and then use VectorIndexer to decide which features should be treated as categorical. We transform the categorical feature values to their indices. This transformed data could then be passed to algorithms such as DecisionTreeRegressor that handle categorical features.

import org.apache.spark.ml.feature.VectorIndexer
import org.apache.spark.mllib.util.MLUtils

val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").toDF()
val indexer = new VectorIndexer()
  .setInputCol("features")
  .setOutputCol("indexed")
  .setMaxCategories(10)
val indexerModel = indexer.fit(data)
val categoricalFeatures: Set[Int] = indexerModel.categoryMaps.keys.toSet
println(s"Chose ${categoricalFeatures.size} categorical features: " +
  categoricalFeatures.mkString(", "))

// Create new column "indexed" with categorical values transformed to indices
val indexedData = indexerModel.transform(data)
import java.util.Map;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.VectorIndexer;
import org.apache.spark.ml.feature.VectorIndexerModel;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.util.MLUtils;
import org.apache.spark.sql.DataFrame;

JavaRDD<LabeledPoint> rdd = MLUtils.loadLibSVMFile(sc.sc(),
  "data/mllib/sample_libsvm_data.txt").toJavaRDD();
DataFrame data = sqlContext.createDataFrame(rdd, LabeledPoint.class);
VectorIndexer indexer = new VectorIndexer()
  .setInputCol("features")
  .setOutputCol("indexed")
  .setMaxCategories(10);
VectorIndexerModel indexerModel = indexer.fit(data);
Map<Integer, Map<Double, Integer>> categoryMaps = indexerModel.javaCategoryMaps();
System.out.print("Chose " + categoryMaps.size() + "categorical features:");
for (Integer feature : categoryMaps.keySet()) {
  System.out.print(" " + feature);
}
System.out.println();

// Create new column "indexed" with categorical values transformed to indices
DataFrame indexedData = indexerModel.transform(data);
from pyspark.ml.feature import VectorIndexer
from pyspark.mllib.util import MLUtils

data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").toDF()
indexer = VectorIndexer(inputCol="features", outputCol="indexed", maxCategories=10)
indexerModel = indexer.fit(data)

# Create new column "indexed" with categorical values transformed to indices
indexedData = indexerModel.transform(data)

Normalizer

Normalizer is a Transformer which transforms a dataset of Vector rows, normalizing each Vector to have unit norm. It takes parameter p, which specifies the p-norm used for normalization. (p=2 by default.) This normalization can help standardize your input data and improve the behavior of learning algorithms.

The following example demonstrates how to load a dataset in libsvm format and then normalize each row to have unit L2 norm and unit L norm.

import org.apache.spark.ml.feature.Normalizer
import org.apache.spark.mllib.util.MLUtils

val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
val dataFrame = sqlContext.createDataFrame(data)

// Normalize each Vector using $L^1$ norm.
val normalizer = new Normalizer()
  .setInputCol("features")
  .setOutputCol("normFeatures")
  .setP(1.0)
val l1NormData = normalizer.transform(dataFrame)

// Normalize each Vector using $L^\infty$ norm.
val lInfNormData = normalizer.transform(dataFrame, normalizer.p -> Double.PositiveInfinity)
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.Normalizer;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.util.MLUtils;
import org.apache.spark.sql.DataFrame;

JavaRDD<LabeledPoint> data =
  MLUtils.loadLibSVMFile(jsc.sc(), "data/mllib/sample_libsvm_data.txt").toJavaRDD();
DataFrame dataFrame = jsql.createDataFrame(data, LabeledPoint.class);

// Normalize each Vector using $L^1$ norm.
Normalizer normalizer = new Normalizer()
  .setInputCol("features")
  .setOutputCol("normFeatures")
  .setP(1.0);
DataFrame l1NormData = normalizer.transform(dataFrame);

// Normalize each Vector using $L^\infty$ norm.
DataFrame lInfNormData =
  normalizer.transform(dataFrame, normalizer.p().w(Double.POSITIVE_INFINITY));
from pyspark.mllib.util import MLUtils
from pyspark.ml.feature import Normalizer

data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
dataFrame = sqlContext.createDataFrame(data)

# Normalize each Vector using $L^1$ norm.
normalizer = Normalizer(inputCol="features", outputCol="normFeatures", p=1.0)
l1NormData = normalizer.transform(dataFrame)

# Normalize each Vector using $L^\infty$ norm.
lInfNormData = normalizer.transform(dataFrame, {normalizer.p: float("inf")})

StandardScaler

StandardScaler transforms a dataset of Vector rows, normalizing each feature to have unit standard deviation and/or zero mean. It takes parameters:

StandardScaler is a Model which can be fit on a dataset to produce a StandardScalerModel; this amounts to computing summary statistics. The model can then transform a Vector column in a dataset to have unit standard deviation and/or zero mean features.

Note that if the standard deviation of a feature is zero, it will return default 0.0 value in the Vector for that feature.

More details can be found in the API docs for StandardScaler and StandardScalerModel.

The following example demonstrates how to load a dataset in libsvm format and then normalize each feature to have unit standard deviation.

import org.apache.spark.ml.feature.StandardScaler
import org.apache.spark.mllib.util.MLUtils

val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
val dataFrame = sqlContext.createDataFrame(data)
val scaler = new StandardScaler()
  .setInputCol("features")
  .setOutputCol("scaledFeatures")
  .setWithStd(true)
  .setWithMean(false)

// Compute summary statistics by fitting the StandardScaler
val scalerModel = scaler.fit(dataFrame)

// Normalize each feature to have unit standard deviation.
val scaledData = scalerModel.transform(dataFrame)
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.StandardScaler;
import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.util.MLUtils;
import org.apache.spark.sql.DataFrame;

JavaRDD<LabeledPoint> data =
  MLUtils.loadLibSVMFile(jsc.sc(), "data/mllib/sample_libsvm_data.txt").toJavaRDD();
DataFrame dataFrame = jsql.createDataFrame(data, LabeledPoint.class);
StandardScaler scaler = new StandardScaler()
  .setInputCol("features")
  .setOutputCol("scaledFeatures")
  .setWithStd(true)
  .setWithMean(false);

// Compute summary statistics by fitting the StandardScaler
StandardScalerModel scalerModel = scaler.fit(dataFrame);

// Normalize each feature to have unit standard deviation.
DataFrame scaledData = scalerModel.transform(dataFrame);
from pyspark.mllib.util import MLUtils
from pyspark.ml.feature import StandardScaler

data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt")
dataFrame = sqlContext.createDataFrame(data)
scaler = StandardScaler(inputCol="features", outputCol="scaledFeatures",
                        withStd=True, withMean=False)

# Compute summary statistics by fitting the StandardScaler
scalerModel = scaler.fit(dataFrame)

# Normalize each feature to have unit standard deviation.
scaledData = scalerModel.transform(dataFrame)

Bucketizer

Bucketizer transforms a column of continuous features to a column of feature buckets, where the buckets are specified by users. It takes a parameter:

Note that if you have no idea of the upper bound and lower bound of the targeted column, you would better add the Double.NegativeInfinity and Double.PositiveInfinity as the bounds of your splits to prevent a potenial out of Bucketizer bounds exception.

Note also that the splits that you provided have to be in strictly increasing order, i.e. s0 < s1 < s2 < ... < sn.

More details can be found in the API docs for Bucketizer.

The following example demonstrates how to bucketize a column of Doubles into another index-wised column.

import org.apache.spark.ml.feature.Bucketizer
import org.apache.spark.sql.DataFrame

val splits = Array(Double.NegativeInfinity, -0.5, 0.0, 0.5, Double.PositiveInfinity)

val data = Array(-0.5, -0.3, 0.0, 0.2)
val dataFrame = sqlContext.createDataFrame(data.map(Tuple1.apply)).toDF("features")

val bucketizer = new Bucketizer()
  .setInputCol("features")
  .setOutputCol("bucketedFeatures")
  .setSplits(splits)

// Transform original data into its bucket index.
val bucketedData = bucketizer.transform(dataFrame)
import com.google.common.collect.Lists;

import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

double[] splits = {Double.NEGATIVE_INFINITY, -0.5, 0.0, 0.5, Double.POSITIVE_INFINITY};

JavaRDD<Row> data = jsc.parallelize(Lists.newArrayList(
  RowFactory.create(-0.5),
  RowFactory.create(-0.3),
  RowFactory.create(0.0),
  RowFactory.create(0.2)
));
StructType schema = new StructType(new StructField[] {
  new StructField("features", DataTypes.DoubleType, false, Metadata.empty())
});
DataFrame dataFrame = jsql.createDataFrame(data, schema);

Bucketizer bucketizer = new Bucketizer()
  .setInputCol("features")
  .setOutputCol("bucketedFeatures")
  .setSplits(splits);

// Transform original data into its bucket index.
DataFrame bucketedData = bucketizer.transform(dataFrame);
from pyspark.ml.feature import Bucketizer

splits = [-float("inf"), -0.5, 0.0, 0.5, float("inf")]

data = [(-0.5,), (-0.3,), (0.0,), (0.2,)]
dataFrame = sqlContext.createDataFrame(data, ["features"])

bucketizer = Bucketizer(splits=splits, inputCol="features", outputCol="bucketedFeatures")

# Transform original data into its bucket index.
bucketedData = bucketizer.transform(dataFrame)

ElementwiseProduct

ElementwiseProduct multiplies each input vector by a provided “weight” vector, using element-wise multiplication. In other words, it scales each column of the dataset by a scalar multiplier. This represents the Hadamard product between the input vector, v and transforming vector, w, to yield a result vector.

(v1vN)(w1wN)=(v1w1vNwN)

ElementwiseProduct takes the following parameter:

This example below demonstrates how to transform vectors using a transforming vector value.

import org.apache.spark.ml.feature.ElementwiseProduct
import org.apache.spark.mllib.linalg.Vectors

// Create some vector data; also works for sparse vectors
val dataFrame = sqlContext.createDataFrame(Seq(
  ("a", Vectors.dense(1.0, 2.0, 3.0)),
  ("b", Vectors.dense(4.0, 5.0, 6.0)))).toDF("id", "vector")

val transformingVector = Vectors.dense(0.0, 1.0, 2.0)
val transformer = new ElementwiseProduct()
  .setScalingVec(transformingVector)
  .setInputCol("vector")
  .setOutputCol("transformedVector")

// Batch transform the vectors to create new column:
val transformedData = transformer.transform(dataFrame)
import com.google.common.collect.Lists;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.ml.feature.ElementwiseProduct;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.Metadata;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;

// Create some vector data; also works for sparse vectors
JavaRDD<Row> jrdd = jsc.parallelize(Lists.newArrayList(
  RowFactory.create("a", Vectors.dense(1.0, 2.0, 3.0)),
  RowFactory.create("b", Vectors.dense(4.0, 5.0, 6.0))
));
List<StructField> fields = new ArrayList<StructField>(2);
fields.add(DataTypes.createStructField("id", DataTypes.StringType, false));
fields.add(DataTypes.createStructField("vector", DataTypes.StringType, false));
StructType schema = DataTypes.createStructType(fields);
DataFrame dataFrame = sqlContext.createDataFrame(jrdd, schema);
Vector transformingVector = Vectors.dense(0.0, 1.0, 2.0);
ElementwiseProduct transformer = new ElementwiseProduct()
  .setScalingVec(transformingVector)
  .setInputCol("vector")
  .setOutputCol("transformedVector");
// Batch transform the vectors to create new column:
DataFrame transformedData = transformer.transform(dataFrame);

VectorAssembler

VectorAssembler is a transformer that combines a given list of columns into a single vector column. It is useful for combining raw features and features generated by different feature transformers into a single feature vector, in order to train ML models like logistic regression and decision trees. VectorAssembler accepts the following input column types: all numeric types, boolean type, and vector type. In each row, the values of the input columns will be concatenated into a vector in the specified order.

Examples

Assume that we have a DataFrame with the columns id, hour, mobile, userFeatures, and clicked:

 id | hour | mobile | userFeatures     | clicked
----|------|--------|------------------|---------
 0  | 18   | 1.0    | [0.0, 10.0, 0.5] | 1.0

userFeatures is a vector column that contains three user features. We want to combine hour, mobile, and userFeatures into a single feature vector called features and use it to predict clicked or not. If we set VectorAssembler’s input columns to hour, mobile, and userFeatures and output column to features, after transformation we should get the following DataFrame:

 id | hour | mobile | userFeatures     | clicked | features
----|------|--------|------------------|---------|-----------------------------
 0  | 18   | 1.0    | [0.0, 10.0, 0.5] | 1.0     | [18.0, 1.0, 0.0, 10.0, 0.5]

VectorAssembler takes an array of input column names and an output column name.

import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.ml.feature.VectorAssembler

val dataset = sqlContext.createDataFrame(
  Seq((0, 18, 1.0, Vectors.dense(0.0, 10.0, 0.5), 1.0))
).toDF("id", "hour", "mobile", "userFeatures", "clicked")
val assembler = new VectorAssembler()
  .setInputCols(Array("hour", "mobile", "userFeatures"))
  .setOutputCol("features")
val output = assembler.transform(dataset)
println(output.select("features", "clicked").first())

VectorAssembler takes an array of input column names and an output column name.

import java.util.Arrays;

import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.mllib.linalg.VectorUDT;
import org.apache.spark.mllib.linalg.Vectors;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.types.*;
import static org.apache.spark.sql.types.DataTypes.*;

StructType schema = createStructType(new StructField[] {
  createStructField("id", IntegerType, false),
  createStructField("hour", IntegerType, false),
  createStructField("mobile", DoubleType, false),
  createStructField("userFeatures", new VectorUDT(), false),
  createStructField("clicked", DoubleType, false)
});
Row row = RowFactory.create(0, 18, 1.0, Vectors.dense(0.0, 10.0, 0.5), 1.0);
JavaRDD<Row> rdd = jsc.parallelize(Arrays.asList(row));
DataFrame dataset = sqlContext.createDataFrame(rdd, schema);

VectorAssembler assembler = new VectorAssembler()
  .setInputCols(new String[] {"hour", "mobile", "userFeatures"})
  .setOutputCol("features");

DataFrame output = assembler.transform(dataset);
System.out.println(output.select("features", "clicked").first());

VectorAssembler takes a list of input column names and an output column name.

from pyspark.mllib.linalg import Vectors
from pyspark.ml.feature import VectorAssembler

dataset = sqlContext.createDataFrame(
    [(0, 18, 1.0, Vectors.dense([0.0, 10.0, 0.5]), 1.0)],
    ["id", "hour", "mobile", "userFeatures", "clicked"])
assembler = VectorAssembler(
    inputCols=["hour", "mobile", "userFeatures"],
    outputCol="features")
output = assembler.transform(dataset)
print(output.select("features", "clicked").first())

Feature Selectors