% \iffalse meta-comment % % File: siunitx-complex.dtx Copyright (C) 2021-2024 Joseph Wright % % It may be distributed and/or modified under the conditions of the % LaTeX Project Public License (LPPL), either version 1.3c of this % license or (at your option) any later version. The latest version % of this license is in the file % % https://www.latex-project.org/lppl.txt % % This file is part of the "siunitx bundle" (The Work in LPPL) % and all files in that bundle must be distributed together. % % The released version of this bundle is available from CTAN. % % ----------------------------------------------------------------------- % % The development version of the bundle can be found at % % https://github.com/josephwright/siunitx % % for those people who are interested. % % ----------------------------------------------------------------------- % %<*driver> \documentclass{l3doc} % Additional commands needed in this source \ProvideDocumentCommand\email{m}{\href{mailto:#1}{\nolinkurl{#1}}} \ProvideDocumentCommand\foreign{m}{\textit{#1}} % The next line is needed so that \GetFileInfo will be able to pick up % version data \usepackage{siunitx} \begin{document} \DocInput{\jobname.dtx} \end{document} %</driver> % \fi % % \GetFileInfo{siunitx.sty} % % \title{^^A % \pkg{siunitx-complex} -- Complex numbers^^A % \thanks{This file describes \fileversion, % last revised \filedate.}^^A % } % % \author{^^A % Joseph Wright^^A % \thanks{^^A % E-mail: % \email{joseph@texdev.net}^^A % }^^A % } % % \date{Released \filedate} % % \maketitle % % \begin{documentation} % % This submodule is concerned with formatting complex numbers. It augments the % standard functions \cs{siunitx_number_format:nN} and \cs{siunitx_quantity:nn} % by allowing parsing of numbers with a complex part. There are no additional % assumptions concerning \LaTeXe{} commands in the submodule beyond those in the % core number and unit submodules. % % \begin{function}{\siunitx_complex_number:n, \siunitx_complex_number:e} % \begin{syntax} % \cs{siunitx_complex_number:n} \Arg{number} % \end{syntax} % Parses the \meta{number} and splits into real and complex parts, which are % then formatted as described for \cs{siunitx_number_format:nN}. The results % are combined and printed using the standard functions in the module. If % the setting \opt{complex-mode} is set to \meta{polar}, the input is % parsed, converted to polar form and then passed to % \cs{siunitx_complex_number:nn}. This parsing requires that the complex root % is given as \texttt{i} at the \emph{end} of the value. % \end{function} % % \begin{function}{\siunitx_complex_number:nn} % \begin{syntax} % \cs{siunitx_complex_number:nn} \Arg{magnitude} \Arg{angle} % \end{syntax} % Parses the \meta{magnitude} and \meta{angle} and then formats each as % described for \cs{siunitx_number_format:nN}. The two are separated by the % angle symbol, which is treated as a numerical part. If % \opt{complex-angle-unit} is set to \opt{degrees} then the unit symbol is % added: this is printed as a unit in the usual way. If % the setting \opt{complex-mode} is set to \meta{cartesian}, the input is % parsed, converted to Cartesian form and then passed to % \cs{siunitx_complex_number:n}. % \end{function} % % \begin{function} % { % \siunitx_complex_quantity:nn , % \siunitx_complex_quantity:en , % \siunitx_complex_quantity:nnn % } % \begin{syntax} % \cs{siunitx_complex_quantity:nn} \Arg{number} \Arg{units} % \cs{siunitx_complex_quantity:nnn} \Arg{magnitude} \Arg{angle} \Arg{units} % \end{syntax} % These functions treat their numerical argument(s) as described % for the corresponding \texttt{number} functions. They then typeset the % entire numerical part and the unit as described for \cs{siunitx_quantity:nn}. % \end{function} % % \begin{function}{complex-angle-unit} % \begin{syntax} % |complex-angle-unit| = |degrees|\verb"|"|radians| % \end{syntax} % Sets how the unit for polar complex numbers is treated. This setting % is used to determine how polar \emph{input} is interpreted, how % conversion to polar form works and how output in polar form is typeset. % The standard setting is |degrees|. % \end{function} % % \begin{function}{complex-mode} % \begin{syntax} % |complex-mode| = |cartesian|\verb"|"|input|\verb"|"|polar| % \end{syntax} % Selects how complex values are formatted: a choice from the options % |cartesian|, |input| and |polar|. The option |cartesian| means that % complex values will always be typeset in cartesian ($x + y\mathrm{i}$) % format, whilst |polar| means that complex are typeset as a magnitude % and angle. Finally, |input| setting means that the input format % (\foreign{i.e.}~difference between \cs{siunitx_complex_number:n} and % \cs{siunitx_complex_number:nn}) is maintained. The standard setting is % |input|. % \end{function} % % \begin{function}{complex-phase-command} % \begin{syntax} % |complex-phase-command| = \meta{cmd} % \end{syntax} % Sets the command used during output of the phase of a complex number in % polar form. The standard setting is |\angle|. % \end{function} % % \begin{function}{complex-root-position} % \begin{syntax} % |complex-root-position| = |after-number|\verb"|"|before-number| % \end{syntax} % Choice which determines where the complex root symbol is printed relative % to the numbers. The standard setting is |after-number|. % \end{function} % % \begin{function}{complex-symbol-degree} % \begin{syntax} % |complex-symbol-degree| = \meta{symbol} % \end{syntax} % Sets the symbol used for polar degrees. % \end{function} % % \begin{function}{input-complex-root} % \begin{syntax} % |input-complex-root| = \meta{tokens} % \end{syntax} % The token(s) considered as complexes roots for number parsing. % The standard setting is |ij|. % \end{function} % % \begin{function}{output-complex-root} % \begin{syntax} % |output-complex-root| = \meta{tokens} % \end{syntax} % The token(s) used to show the complex root in output. The standard setting % is |\mathrm{i}|. % \end{function} % % \begin{function}{print-complex-unity} % \begin{syntax} % |print-complex-unity| = |true|\verb"|"|false| % \end{syntax} % Switch to determine if the number \num{1} is printed for a complex % part which is exactly unity. % \end{function} % % \end{documentation} % % \begin{implementation} % % Start the \pkg{DocStrip} guards. % \begin{macrocode} %<*package> % \end{macrocode} % % \section{\pkg{siunitx-complex} implementation} % % Identify the internal prefix. % \begin{macrocode} %<@@=siunitx_complex> % \end{macrocode} % % \subsection{General setup} % % \begin{variable}{\l_@@_tmp_fp, \l_@@_tmp_tl} % \begin{macrocode} \fp_new:N \l_@@_tmp_fp \tl_new:N \l_@@_tmp_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_input_tl} % The numerical input exactly as given by the user. % \begin{macrocode} \tl_new:N \l_@@_input_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_comparator_tl} % A comparator, if found, is held here. % \begin{macrocode} \tl_new:N \l_@@_comparator_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_exp_tl} % The exponent part of a parsed number. % \begin{macrocode} \tl_new:N \l_@@_exp_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_real_tl, \l_@@_img_tl} % The real and imaginary parts of cartesian form, respectively. % \begin{macrocode} \tl_new:N \l_@@_real_tl \tl_new:N \l_@@_img_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_mag_tl, \l_@@_angle_tl} % The magnitude and angle of polar form, respectively. % \begin{macrocode} \tl_new:N \l_@@_mag_tl \tl_new:N \l_@@_angle_tl % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_join_tl, \l_@@_sign_tl} % Staging posts for a joining and leading sign, respectively. % \begin{macrocode} \tl_new:N \l_@@_join_tl \tl_new:N \l_@@_sign_tl % \end{macrocode} % \end{variable} % % \begin{variable} % { % \l_@@_root_after_bool , % \l_@@_force_cartesian_bool , % \l_@@_force_polar_bool , % \l_@@_phase_tl , % \l_@@_polar_degree_bool , % \l_@@_symbol_degree_tl , % \l_@@_input_root_tl , % \l_@@_output_root_tl % } % \begin{macrocode} \bool_new:N \l_@@_root_after_bool \bool_new:N \l_@@_force_cartesian_bool \bool_new:N \l_@@_force_polar_bool \bool_new:N \l_@@_polar_degree_bool \keys_define:nn { siunitx } { complex-mode .choice: , complex-mode / cartesian .code:n = { \bool_set_true:N \l_@@_force_cartesian_bool \bool_set_false:N \l_@@_force_polar_bool } , complex-mode / polar .code:n = { \bool_set_false:N \l_@@_force_cartesian_bool \bool_set_true:N \l_@@_force_polar_bool } , complex-mode / input .code:n = { \bool_set_false:N \l_@@_force_cartesian_bool \bool_set_false:N \l_@@_force_polar_bool } , complex-angle-unit .choice: , complex-angle-unit / degrees .code:n = { \bool_set_true:N \l_@@_polar_degree_bool } , complex-angle-unit / radians .code:n = { \bool_set_false:N \l_@@_polar_degree_bool } , complex-phase-command .tl_set:N = \l_@@_phase_tl , complex-root-position .choice: , complex-root-position / after-number .code:n = { \bool_set_true:N \l_@@_root_after_bool } , complex-root-position / before-number .code:n = { \bool_set_false:N \l_@@_root_after_bool } , complex-symbol-degree .tl_set:N = \l_@@_symbol_degree_tl , input-complex-root .tl_set:N = \l_@@_input_root_tl , output-complex-root .tl_set:N = \l_@@_output_root_tl , print-complex-unity .bool_set:N = \l_@@_print_unity_bool } % \end{macrocode} % \end{variable} % % \subsection{Parsing} % % \begin{macro}{\@@_parse:nNN} % \begin{macro}{\@@_parse_end:} % \begin{macro}{\@@_parse_clear:} % Parsing for complex numbers needs some of the same approaches as the % general parser. However, as the aim here is to do only enough to split % the real and imaginary parts before handing off the the usual code, % it's not a full repeat. Instead, we shortcut where we can. The |clear| % function here is not only there to make this function shorter: it % also allows a single way to zap any stored data if a parse error occurs. % \begin{macrocode} \cs_new_protected:Npn \@@_parse:nNN #1#2#3 { \group_begin: \@@_parse_clear: \protected@edef \l_@@_arg_tl {#1} \tl_set_eq:NN \l_@@_input_tl \l_@@_arg_tl \siunitx_number_normalize_symbols:N \l_@@_arg_tl \tl_if_empty:NF \l_@@_arg_tl { \@@_parse_comparator: } \@@_parse_check: \cs_set_protected:Npx \@@_parse_end: { \tl_set:Nn \exp_not:N #2 { \exp_not:V \l_@@_real_tl } \tl_set:Nn \exp_not:N #3 { \exp_not:V \l_@@_img_tl } } \exp_after:wN \group_end: \@@_parse_end: } \cs_new_protected:Npn \@@_parse_end: { } \cs_new_protected:Npn \@@_parse_clear: { \tl_clear:N \l_@@_real_tl \tl_clear:N \l_@@_img_tl \tl_clear:N \l_@@_exp_tl \tl_clear:N \l_@@_sign_tl \tl_clear:N \l_@@_join_tl } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_check:} % \begin{macro}{\@@_parse_check:N} % Now we tidy up and do the main work: passing to the standard formatter for % final parsing. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_check: { \tl_if_empty:NTF \l_@@_img_tl { \@@_parse_check:N \l_@@_real_tl } { \tl_if_empty:NTF \l_@@_real_tl { \@@_parse_check:N \l_@@_img_tl } { \@@_parse_check:N \l_@@_real_tl \tl_set_eq:NN \l_@@_sign_tl \l_@@_join_tl \@@_parse_check:N \l_@@_img_tl } } } \cs_new_protected:Npn \@@_parse_check:N #1 { \tl_set:Nx #1 { \exp_not:V \l_@@_comparator_tl \exp_not:V \l_@@_sign_tl \exp_not:V #1 \exp_not:V \l_@@_exp_tl } \tl_clear:N \l_@@_comparator_tl \tl_clear:N \l_@@_sign_tl \siunitx_number_parse:VN #1 #1 } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_comparator:} % \begin{macro}{\@@_parse_comparator_aux:Nw} % The first step is to extract any comparator: this is the same as % for a full number parse. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_comparator: { \exp_after:wN \@@_parse_comparator_aux:Nw \l_@@_arg_tl \q_stop } \cs_new_protected:Npn \@@_parse_comparator_aux:Nw #1#2 \q_stop { \tl_if_in:NnTF \l_siunitx_number_input_comparator_tl {#1} { \tl_set:Nn \l_@@_comparator_tl {#1} \tl_set:Nn \l_@@_arg_tl {#2} } { \tl_clear:N \l_@@_comparator_tl } \tl_if_empty:NF \l_@@_arg_tl { \@@_parse_sign: } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_exponent:} % \begin{macro}{\@@_parse_exponent_auxi:w} % \begin{macro}{\@@_parse_exponent_auxii:nn} % An exponent part of a number has to come at the end and can only occur % once. Thus it is relatively easy to parse. The code here is a simplified % version of that in \pkg{siunitx-number}: we only need to find \emph{some} % exponent, not check on the detail. Notice that we need to retain the % exponent marker here: that is done using the short-lived temporary % variable. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_exponent: { \tl_if_empty:NTF \l_siunitx_number_input_exponent_tl { \@@_parse_root: } { \tl_set:Nx \l_@@_tmp_tl { \tl_head:V \l_siunitx_number_input_exponent_tl } \tl_map_inline:Nn \l_siunitx_number_input_exponent_tl { \tl_replace_all:NnV \l_@@_arg_tl {##1} \l_@@_tmp_tl } \use:x { \cs_set_protected:Npn \exp_not:N \@@_parse_exponent_auxi:w ####1 \exp_not:V \l_@@_tmp_tl ####2 \exp_not:V \l_@@_tmp_tl ####3 \exp_not:N \q_stop } { \@@_parse_exponent_auxii:nn {##1} {##2} } \use:x { \@@_parse_exponent_auxi:w \exp_not:V \l_@@_arg_tl \exp_not:V \l_@@_tmp_tl \exp_not:N \q_nil \exp_not:V \l_@@_tmp_tl \exp_not:N \q_stop } } } \cs_new_protected:Npn \@@_parse_exponent_auxi:w { } \cs_new_protected:Npn \@@_parse_exponent_auxii:nn #1#2 { \quark_if_nil:nF {#2} { \tl_set:Nn \l_@@_arg_tl {#1} \tl_set:Nx \l_@@_exp_tl { \exp_not:V \l_@@_tmp_tl \exp_not:n {#2} } } \@@_parse_root: } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_root:} % \begin{macro}{\@@_parse_root_auxi:w} % \begin{macro}{\@@_parse_root_auxii:nn} % Splitting at the complex root is much like splitting the exponent. % After dealing with the case where there is no complex root allowed, % use the first possible symbol to do the work. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_root: { \tl_if_empty:NTF \l_@@_input_root_tl { \tl_set_eq:NN \l_@@_real_tl \l_@@_arg_tl } { \tl_set:Nx \l_@@_tmp_tl { \tl_head:V \l_@@_input_root_tl } \tl_map_inline:Nn \l_@@_input_root_tl { \tl_replace_all:NnV \l_@@_arg_tl {##1} \l_@@_tmp_tl } \use:x { \cs_set_protected:Npn \exp_not:N \@@_parse_root_auxi:w ####1 \exp_not:V \l_@@_tmp_tl ####2 \exp_not:V \l_@@_tmp_tl ####3 \exp_not:N \q_stop } { \@@_parse_root_auxii:nn {##1} {##2} } \use:x { \@@_parse_root_auxi:w \exp_not:V \l_@@_arg_tl \exp_not:V \l_@@_tmp_tl \exp_not:N \q_nil \exp_not:V \l_@@_tmp_tl \exp_not:N \q_stop } } } \cs_new_protected:Npn \@@_parse_root_auxi:w { } % \end{macrocode} % This is where the business end lies. We have four possibilities: % \begin{itemize} % \item There was no complex root at all: |#2| will be |\q_nil| % \item All of the number is in the complex part with a leading % root: |#1| will be empty. This includes the case where % the input was \emph{just} a root symbol (plus possibly sign, % exponent): we need to cover that. % \item All of the number was before the complex root: |#2| will % be empty and we need to check |#1| fully to split out the two % parts % \item The input has a real part with the complex part starting % with the root symbol: just the last token needs to be separated. % \end{itemize} % \begin{macrocode} \cs_new_protected:Npn \@@_parse_root_auxii:nn #1#2 { \quark_if_nil:nTF {#2} { \tl_set:Nn \l_@@_real_tl {#1} } { \tl_set:Nn \l_@@_img_tl {#2} \tl_if_blank:nTF {#1} { \tl_if_blank:nT {#2} { \tl_set:Nn \l_@@_img_tl { 1 } } } { \tl_if_blank:nTF {#2} { \@@_parse_split:n {#1} } { \@@_parse_sign_check:n {#1} } } } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_sign:} % \begin{macro}{\@@_parse_sign_aux:Nw} % The first token of a number after a comparator could be a sign. A quick % check is made and if found stored. There is no need to worry about the % nature of the sign: we keep them regardless. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_sign: { \exp_after:wN \@@_parse_sign_aux:Nw \l_@@_arg_tl \q_stop } \cs_new_protected:Npn \@@_parse_sign_aux:Nw #1#2 \q_stop { \tl_if_in:NnT \l_siunitx_number_input_sign_tl {#1} { \tl_set:Nn \l_@@_sign_tl {#1} \tl_set:Nn \l_@@_arg_tl {#2} } \tl_if_empty:NF \l_@@_arg_tl { \@@_parse_exponent: } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_sign_check:n} % \begin{macro}{\@@_parse_sign_check:nN} % \begin{macro}{\@@_parse_sign_check:nNw} % Here, we want to check that the last token in the input is a sign. % There cannot be anything after the sign, and there has to be at one % token before the sign: we can therefore signal a parsing error if we % need to. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_sign_check:n #1 { \@@_parse_sign_check:nN { } #1 \q_recursion_tail \q_recursion_stop } \cs_new_protected:Npn \@@_parse_sign_check:nN #1#2 { \quark_if_recursion_tail_stop_do:Nn #2 { \@@_parse_clear: } \tl_if_in:NnTF \l_siunitx_number_input_sign_tl {#2} { \@@_parse_sign_check:nNw {#1} #2 } { \@@_parse_sign_check:nN {#1#2} } } \cs_new_protected:Npn \@@_parse_sign_check:nNw #1#2 #3 \q_recursion_tail \q_recursion_stop { \tl_if_blank:nTF {#3} { \tl_if_blank:nTF {#1} { \@@_parse_clear: } { \tl_set:Nn \l_@@_real_tl {#1} \tl_set:Nn \l_@@_join_tl {#2} } } { \@@_parse_clear: } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_split:n} % \begin{macro}{\@@_parse_split:nN} % \begin{macro}{\@@_parse_split:w} % Checking for a sign inside the leading part of the number is a simple loop. % There is the possibility that there is no number in the imaginary part % needs to be allowed for. Notice that we do a check that there is some % real part: this covers for example an original input |++1i|, which % otherwise would not be trapped. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_split:n #1 { \@@_parse_split:nN { } #1 \q_recursion_tail \q_recursion_stop } \cs_new_protected:Npn \@@_parse_split:nN #1#2 { \quark_if_recursion_tail_stop_do:Nn #2 { \tl_set:Nn \l_@@_img_tl {#1} } \tl_if_in:NnTF \l_siunitx_number_input_sign_tl {#2} { \tl_set:Nn \l_@@_real_tl {#1} \tl_set:Nn \l_@@_join_tl {#2} \@@_parse_split:w } { \@@_parse_split:nN {#1#2} } } \cs_new_protected:Npn \@@_parse_split:w #1 \q_recursion_tail \q_recursion_stop { \tl_set:Nx \l_@@_img_tl { \tl_if_blank:nTF {#1} { 1 } { \exp_not:n {#1} } } \tl_if_empty:NT \l_@@_real_tl { \@@_parse_clear: } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_parse_polar:nn} % Almost trivial but repeated in a couple of places so worth an auxiliary. % \begin{macrocode} \cs_new_protected:Npn \@@_parse_polar:nn #1#2 { \bool_if:NTF \l_siunitx_number_parse_bool { \siunitx_number_parse:nN {#1} \l_@@_mag_tl } { \tl_set:Nn \l_@@_mag_tl { \ensuremath {#1} } } \group_begin: \keys_set:nn { siunitx } { input-comparators = , input-exponent-markers = , input-open-uncertainty = , input-close-uncertainty = } \siunitx_number_format:nN {#2} \l_@@_angle_tl \exp_args:NNNV \group_end: \tl_set:Nn \l_@@_angle_tl \l_@@_angle_tl } % \end{macrocode} % \end{macro} % % \section{Formatting} % % \begin{variable}{\l_@@_bracket_close_tl, \l_@@_bracket_open_tl} % Purely internal for the present. % \begin{macrocode} \tl_new:N \l_@@_bracket_close_tl \tl_new:N \l_@@_bracket_open_tl \tl_set:Nn \l_@@_bracket_open_tl { ( } \tl_set:Nn \l_@@_bracket_close_tl { ) } % \end{macrocode} % \end{variable} % % \begin{variable}{\l_@@_unit_tl} % \begin{macrocode} \tl_new:N \l_@@_unit_tl % \end{macrocode} % \end{variable} % % \begin{macro}{\siunitx_complex_number:n, \siunitx_complex_number:e} % \begin{macro}{\siunitx_complex_number:nn, \@@_number:nn} % \begin{macro}{\siunitx_complex_quantity:nn, \siunitx_complex_quantity:en} % \begin{macro}{\siunitx_complex_quantity:nnn, \@@_quantity:nnn} % The work here is pretty trivial: only conversion between forms makes % things a bit more intricate. % \begin{macrocode} \cs_new_protected:Npn \siunitx_complex_number:n #1 { \bool_lazy_and:nnTF { \l_@@_force_polar_bool } { \l_siunitx_number_parse_bool } { \use:e { \siunitx_complex_number:nn \@@_convert_polar:n {#1} } } { \bool_if:NTF \l_siunitx_number_parse_bool { \@@_parse:nNN {#1} \l_@@_real_tl \l_@@_img_tl \@@_format_cartesian:n { } } { \siunitx_number_format:nN {#1} \l_@@_tmp_tl \siunitx_print_number:V \l_@@_tmp_tl } } } \cs_generate_variant:Nn \siunitx_complex_number:n { e, x } \cs_new_protected:Npn \siunitx_complex_number:nn #1#2 { \bool_lazy_or:nnTF { \tl_if_blank_p:n {#1} } { \tl_if_blank_p:n {#2} } { \msg_error:nnnn { siunitx } { invalid-polar-form } {#1} {#2} } { \@@_number:nn {#1} {#2} } } \cs_new_protected:Npn \@@_number:nn #1#2 { \bool_lazy_and:nnTF { \l_@@_force_cartesian_bool } { \l_siunitx_number_parse_bool } { \siunitx_complex_number:e { \@@_convert_cartesian:nn {#1} {#2} } } { \@@_parse_polar:nn {#1} {#2} \@@_format_polar:n { } } } \cs_new_protected:Npn \siunitx_complex_quantity:nn #1#2 { \bool_lazy_and:nnTF { \l_@@_force_polar_bool } { \l_siunitx_number_parse_bool } { \use:e { \siunitx_complex_quantity:nnn \@@_convert_polar:n {#1} } {#2} } { \bool_if:NTF \l_siunitx_number_parse_bool { \@@_parse:nNN {#1} \l_@@_real_tl \l_@@_img_tl \@@_format_cartesian:n {#2} } { \siunitx_quantity:nn {#1} {#2} } } } \cs_generate_variant:Nn \siunitx_complex_quantity:nn { e , x } \cs_new_protected:Npn \siunitx_complex_quantity:nnn #1#2#3 { \bool_lazy_or:nnTF { \tl_if_blank_p:n {#1} } { \tl_if_blank_p:n {#2} } { \msg_error:nnnn { siunitx } { invalid-polar-form } {#1} {#2} } { \@@_quantity:nnn {#1} {#2} {#3} } } \cs_new_protected:Npn \@@_quantity:nnn #1#2#3 { \bool_lazy_and:nnTF { \l_@@_force_cartesian_bool } { \l_siunitx_number_parse_bool } { \siunitx_complex_quantity:en { \@@_convert_cartesian:nn {#1} {#2} } {#3} } { \@@_parse_polar:nn {#1} {#2} \@@_format_polar:n {#3} } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_format_cartesian:n} % \begin{macro}{\@@_format_cartesian_auxi:n} % \begin{macro}{\@@_format_cartesian_auxii:n} % \begin{macro}{\@@_drop_exponent:nnnnnnn} % \begin{macro}{\@@_format_sign:nnnnnnn} % \begin{macro}{\@@_extract_exponent:nw} % \begin{macro}{\@@_extract_exponent_aux:w} % \begin{macro}[EXP]{\@@_format_bracket:n} % We start here checking that there is something to do. % \begin{macrocode} \cs_new_protected:Npn \@@_format_cartesian:n #1 { \bool_lazy_and:nnF { \tl_if_empty_p:N \l_@@_real_tl } { \tl_if_empty_p:N \l_@@_img_tl } { \@@_format_cartesian_auxi:n {#1} } } % \end{macrocode} % We split based on whether the number has a complex part at all, % then print the result. % \begin{macrocode} \cs_new_protected:Npn \@@_format_cartesian_auxi:n #1 { \tl_clear:N \l_@@_tmp_tl \tl_if_empty:NTF \l_@@_img_tl { \siunitx_number_process:NN \l_@@_real_tl \l_@@_real_tl \tl_set:Nx \l_@@_tmp_tl { \siunitx_number_output:N \l_@@_real_tl } } { \@@_format_cartesian_auxii:n {#1} } \tl_if_blank:nTF {#1} { \siunitx_print_number:V \l_@@_tmp_tl } { \siunitx_quantity_print:VV \l_@@_tmp_tl \l_@@_unit_tl } } % \end{macrocode} % If we get to this stage we have both parts to a complex number. We % need to process both and do some massaging, then it's just a question % of reassembly with the right parts in the right places. % \begin{macrocode} \cs_new_protected:Npn \@@_format_cartesian_auxii:n #1 { \@@_format_cartesian_units:n {#1} \tl_if_empty:NF \l_@@_real_tl { \exp_after:wN \@@_drop_exponent:nnnnnnn \l_@@_real_tl } \exp_after:wN \@@_format_sign:nnnnnnn \l_@@_img_tl \tl_set:Nx \l_@@_tmp_tl { \siunitx_number_output:NN \l_@@_img_tl \q_nil } \exp_after:wN \@@_extract_exponent:w \l_@@_tmp_tl \q_stop \tl_set:Nx \l_@@_tmp_tl { \bool_lazy_or:nnTF { \bool_lazy_and_p:nn { \l_siunitx_number_bracket_ambiguous_bool } { ! \tl_if_empty_p:N \l_@@_exp_tl } } { ! \bool_lazy_any_p:n { { \tl_if_blank_p:n {#1} } { \tl_if_empty_p:N \l_@@_real_tl } { \tl_if_empty_p:N \l_@@_img_tl } } } { \@@_format_bracket:n } { \use:n } { \siunitx_number_output:N \l_@@_real_tl \exp_not:V \l_@@_sign_tl \bool_if:NF \l_@@_root_after_bool { \exp_not:V \l_@@_output_root_tl } \exp_not:V \l_@@_tmp_tl \bool_if:NT \l_@@_root_after_bool { \exp_not:V \l_@@_output_root_tl } } \exp_not:V \l_@@_exp_tl } } % \end{macrocode} % No exponent for the real part. % \begin{macrocode} \cs_new_protected:Npn \@@_drop_exponent:nnnnnnn #1#2#3#4#5#6#7 { \tl_set:Nn \l_@@_real_tl { {#1} {#2} {#3} {#4} {#5} { } { 0 } } } % \end{macrocode} % Ensure the imaginary part has a sign. % \begin{macrocode} \cs_new_protected:Npn \@@_format_sign:nnnnnnn #1#2#3#4#5#6#7 { \tl_set:Nx \l_@@_img_tl { { } { \tl_if_blank:nTF {#2} { \tl_if_empty:NF \l_@@_real_tl { + } } { \exp_not:n {#2} } } \exp_not:n { {#3} {#4} {#5} {#6} {#7} } } } % \end{macrocode} % Pull out the formatted exponent: we also need the sign. % An imaginary part that is exactly $1$ is omitted, with only the complex % root printed. That means checking and removing a lone $1$ here. % \begin{macrocode} \cs_new_protected:Npn \@@_extract_exponent:w #1 \q_nil #2 \q_nil #3 \q_nil #4 \q_nil #5 \q_nil #6 \q_nil #7 \q_nil #8 \q_nil #9 \q_stop { \tl_set:Nn \l_@@_sign_tl {#1#2} \bool_lazy_all:nTF { { ! \l_@@_print_unity_bool } { \str_if_eq_p:nn {#3} { 1 } } { \tl_if_blank_p:n {#5} } } { \@@_extract_exponent_aux:nw {#6#7#8} } { \@@_extract_exponent_aux:nw {#3#4#5#6#7#8} } #9 \q_stop } \cs_new:Npn \@@_extract_exponent_aux:nw #1#2 \q_nil #3 \q_nil #4 \q_stop { \tl_set:Nn \l_@@_tmp_tl {#1#2} \tl_set:Nn \l_@@_exp_tl {#3#4} } \cs_new_protected:Npn \@@_format_bracket:n #1 { \exp_not:V \l_@@_bracket_open_tl #1 \exp_not:V \l_@@_bracket_close_tl } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro}{\@@_format_cartesian_units:n} % \begin{macro} % { % \@@_format_cartesian_combine-exponent:n , % \@@_format_cartesian_extract-exponent:n , % \@@_format_cartesian_input:n % } % \begin{macro}{\@@_format_extract-exponent:N} % \begin{macro}[EXP]{\@@_extract_exp:nnnnnnn} % \begin{macro}{\@@_drop_exp:N} % \begin{macro}[EXP]{\@@_drop_exp:nnnnnnnN} % Formatting units needs to know the settings from the main module, and % the flow is then much the same as in \pkg{siunitx-compound}. We only % have to watch the fact there are two numbers to format. % \begin{macrocode} \cs_new_protected:Npn \@@_format_cartesian_units:n #1 { \tl_if_blank:nTF {#1} { \siunitx_number_process:NN \l_@@_real_tl \l_@@_real_tl \siunitx_number_process:NN \l_@@_img_tl \l_@@_img_tl } { \use:c { @@_format_cartesian_ \l_siunitx_quantity_prefix_mode_tl :n } {#1} } } \cs_new_protected:cpn { @@_format_cartesian_combine-exponent:n } #1 { \tl_if_empty:NF \l_@@_real_tl { \siunitx_number_process:NN \l_@@_real_tl \l_@@_real_tl } \siunitx_number_process:NN \l_@@_img_tl \l_@@_img_tl \fp_set:Nn \l_@@_tmp_fp { \exp_after:wN \@@_extract_exp:nnnnnnn \l_@@_img_tl } \@@_drop_exp:N \l_@@_real_tl \@@_drop_exp:N \l_@@_img_tl \siunitx_unit_format_combine_exponent:nnN {#1} \l_@@_tmp_fp \l_@@_unit_tl } \cs_new_protected:cpx { @@_format_cartesian_extract-exponent:n } #1 { \exp_not:N \siunitx_unit_format_extract_prefixes:nNN {#1} \exp_not:N \l_@@_unit_tl \exp_not:N \l_@@_tmp_fp \exp_not:c { @@_format_extract-exponent:N } \exp_not:N \l_@@_img_tl \exp_not:N \tl_if_empty:NF \exp_not:N \l_@@_real_tl { \exp_not:c { @@_format_extract-exponent:N } \exp_not:N \l_@@_real_tl } } \cs_new_protected:Npn \@@_format_cartesian_input:n #1 { \siunitx_number_process:NN \l_@@_real_tl \l_@@_real_tl \siunitx_number_process:NN \l_@@_img_tl \l_@@_img_tl \siunitx_unit_format:nN {#1} \l_@@_unit_tl } \cs_new_protected:cpn { @@_format_extract-exponent:N } #1 { \tl_set:Nx #1 { \siunitx_number_adjust_exponent:Nn #1 \l_@@_tmp_fp } \siunitx_number_process:NN #1 #1 } \cs_new:Npn \@@_extract_exp:nnnnnnn #1#2#3#4#5#6#7 { #6#7 } \cs_new_protected:Npn \@@_drop_exp:N #1 { \exp_after:wN \@@_drop_exp:nnnnnnnN #1 #1 } \cs_new_protected:Npn \@@_drop_exp:nnnnnnnN #1#2#3#4#5#6#7#8 { \tl_set:Nn #8 { {#1} {#2} {#3} {#4} {#5} { } { 0 } } } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \begin{macro} % { % \@@_format_polar:n , % \@@_format_combine-exponent:n , % \@@_format_extract-exponent:n , % \@@_format_polar_input:n % } % \begin{macro}{\@@_format_phase:} % We see similar ideas here to the Cartesian versions, but with only % the magnitude to adjust, things are rather simpler in the exponent % manipulations. % \begin{macrocode} \cs_new_protected:Npn \@@_format_polar:n #1 { \tl_if_blank:nTF {#1} { \bool_if:NT \l_siunitx_number_parse_bool { \siunitx_number_process:NN \l_@@_mag_tl \l_@@_mag_tl } } { \bool_if:NTF \l_siunitx_number_parse_bool { \use:c { @@_format_polar_ \l_siunitx_quantity_prefix_mode_tl :n } {#1} } { \@@_format_polar_input:n {#1} } } \tl_set:Nx \l_@@_tmp_tl { \bool_if:NTF \l_siunitx_number_parse_bool { \siunitx_number_output:N \l_@@_mag_tl } { \exp_not:V \l_@@_mag_tl } } \siunitx_print_number:V \l_@@_tmp_tl \l_@@_phase_tl { \@@_format_phase: } \siunitx_quantity_print:nV { } \l_@@_unit_tl } \cs_new_protected:cpn { @@_format_polar_combine-exponent:n } #1 { \siunitx_number_process:NN \l_@@_mag_tl \l_@@_mag_tl \fp_set:Nn \l_@@_tmp_fp { \exp_after:wN \@@_extract_exp:nnnnnnn \l_@@_mag_tl } \@@_drop_exp:N \l_@@_mag_tl \siunitx_unit_format_combine_exponent:nnN {#1} \l_@@_tmp_fp \l_@@_unit_tl } \cs_new_protected:cpx { @@_format_polar_extract-exponent:n } #1 { \exp_not:N \siunitx_unit_format_extract_prefixes:nNN {#1} \exp_not:N \l_@@_unit_tl \exp_not:N \l_@@_tmp_fp \exp_not:c { @@_format_extract-exponent:N } \exp_not:N \l_@@_mag_tl } \cs_new_protected:Npn \@@_format_polar_input:n #1 { \bool_if:NT \l_siunitx_number_parse_bool { \siunitx_number_process:NN \l_@@_mag_tl \l_@@_mag_tl } \siunitx_unit_format:nN {#1} \l_@@_unit_tl } \cs_new_protected:Npn \@@_format_phase: { \group_begin: \bool_if:NTF \l_@@_polar_degree_bool { \exp_args:NV \siunitx_unit_options_apply:n \l_@@_symbol_degree_tl \siunitx_unit_format:VN \l_@@_symbol_degree_tl \l_@@_tmp_tl } { \tl_clear:N \l_@@_tmp_tl } \siunitx_quantity_print:VV \l_@@_angle_tl \l_@@_tmp_tl \group_end: } % \end{macrocode} % \end{macro} % \end{macro} % % \subsection{Conversion} % % \begin{macro}[EXP] % { % \@@_convert_cartesian:nn , % \@@_convert_cartesian_aux:nn , % \@@_convert_cartesian_aux:ee % } % \begin{macro}[EXP]{\@@_convert_cartesian_aux:w} % Conversion to Cartesian form is easy as we have two inputs and need to % do no parsing here at all. % \begin{macrocode} \cs_new:Npn \@@_convert_cartesian:nn #1#2 { \@@_convert_cartesian_aux:ee { \fp_to_tl:n { (#1) * cos \bool_if:NT \l_@@_polar_degree_bool { d } (#2) } } { \fp_to_tl:n { (#1) * sin \bool_if:NT \l_@@_polar_degree_bool { d } (#2) } } } \cs_new:Npn \@@_convert_cartesian_aux:nn #1#2 { \@@_convert_cartesian_aux:w #1 e e \q_mark #2 e e \q_stop } \cs_generate_variant:Nn \@@_convert_cartesian_aux:nn { ee } \cs_new:Npn \@@_convert_cartesian_aux:w #1 e #2 e #3 \q_mark #4 e #5 e #6 \q_stop { \fp_compare:nNnF {#1} = \c_zero_fp {#1} \fp_compare:nNnF {#4} = \c_zero_fp { \fp_compare:nNnF {#4} < \c_zero_fp { + } #4 i } \tl_if_blank:nF {#2} { e #2 } } % \end{macrocode} % \end{macro} % \end{macro} % % \begin{macro}[EXP]{\@@_convert_polar:n} % \begin{macro}[EXP]{\@@_convert_polar_auxi:w} % \begin{macro}[EXP]{\@@_convert_polar_auxii:nw} % \begin{macro}[EXP]{\@@_convert_polar_auxiii:nnw} % \begin{macro}[EXP]{\@@_convert_polar_auxiv:nnw} % \begin{macro}[EXP]{\@@_convert_polar_auxv:nnw} % \begin{macro}[EXP]{\@@_convert_polar_auxvi:nnn, \@@_convert_polar_auxvi:enn} % \begin{macro}[EXP]{\@@_convert_polar_auxvii:nnn} % \begin{macro}[EXP] % {\@@_convert_polar_auxviii:nnn, \@@_convert_polar_auxviii:eee} % \begin{macro}[EXP] % {\@@_convert_polar_auxix:nn, \@@_convert_polar_auxix:ee} % A simplified parser for complex numbers which works by expansion, % then converts to polar form. % \begin{macrocode} \cs_new:Npn \@@_convert_polar:n #1 { \@@_convert_polar_auxi:w #1 e e \q_stop } \cs_new:Npn \@@_convert_polar_auxi:w #1 e #2 e #3 \q_stop { \@@_convert_polar_auxii:nw {#2} #1 \q_stop } \cs_new:Npn \@@_convert_polar_auxii:nw #1#2#3 \q_stop { \bool_lazy_or:nnTF { \str_if_eq_p:nn {#2} { i } } { \str_if_eq_p:nn {#2#3} { +i } } { \@@_convert_polar_auxvii:nnn { } { 1 } {#1} } { \str_if_eq:nnTF {#2#3} { -i } { \@@_convert_polar_auxvii:nnn { } { -1 } {#1} } { \@@_convert_polar_auxiii:nnw {#1} {#2} #3 + + \q_stop } } } \cs_new:Npn \@@_convert_polar_auxiii:nnw #1#2#3 + #4 + #5 \q_stop { \tl_if_blank:nTF {#4} { \@@_convert_polar_auxiv:nnw {#1} {#2} #3 - - \q_stop } { \str_if_eq:eeTF { \use:n #4 } { i } { \@@_convert_polar_auxvii:nnn {#2#3} { 1 } {#1} } { \@@_convert_polar_auxv:nnw {#2#3} {#1} #4 i \q_nil i \q_stop } } } \cs_new:Npn \@@_convert_polar_auxiv:nnw #1#2#3 - #4 - #5 \q_stop { \tl_if_blank:nTF {#4} { \@@_convert_polar_auxv:nnw { } {#1} #2#3 i \q_nil i \q_stop } { \str_if_eq:eeTF { \use:n #4 } { i } { \@@_convert_polar_auxvii:nnn { } { -1 } {#1} } { \@@_convert_polar_auxv:nnw {#2#3} {#1} -#4 i \q_nil i \q_stop } } } % \end{macrocode} % Negative real values are special-cased here for efficiency. % \begin{macrocode} \cs_new:Npn \@@_convert_polar_auxv:nnw #1#2#3 i #4 i #5 \q_stop { \quark_if_nil:nTF {#4} { \tl_if_head_eq_meaning:nNTF {#3} - { \@@_convert_polar_auxvi:enn { \use_none:n #3 } { 180 } } { \@@_convert_polar_auxvi:nnn {#3} { 0 } } {#2} } { \@@_convert_polar_auxvii:nnn {#1} {#3} {#2} } } \cs_new:Npn \@@_convert_polar_auxvi:nnn #1#2#3 { { #1 \tl_if_blank:nF {#3} { e#3 } } {#2} } \cs_generate_variant:Nn \@@_convert_polar_auxvi:nnn { e } \cs_new:Npn \@@_convert_polar_auxvii:nnn #1#2#3 { \@@_convert_polar_auxviii:eee { \tl_if_blank:nTF {#1} { 0 } {#1} } { \tl_if_blank:nTF {#2} { 0 } {#2} } { \tl_if_blank:nF {#3} { e#3 } } } \cs_new:Npn \@@_convert_polar_auxviii:nnn #1#2#3 { \@@_format_polar_auxix:ee { \fp_eval:n { sqrt ( (#1#3)^2 + (#2#3)^2 ) } } { \fp_eval:n { atan \bool_if:NT \l_@@_polar_degree_bool { d } (#2 , #1) } } } \cs_generate_variant:Nn \@@_convert_polar_auxviii:nnn { eee } \cs_new:Npn \@@_format_polar_auxix:nn #1#2 { {#1} {#2} } \cs_generate_variant:Nn \@@_format_polar_auxix:nn { ee } % \end{macrocode} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % \end{macro} % % \subsection{Messages} % % \begin{macrocode} \msg_new:nnnn { siunitx } { invalid-polar-form } { Invalid~polar~form~"#1:#2". } { Complex~numbers~in~polar~form~must~have~both~a~magnitude~and~and~ angle. } % \end{macrocode} % % \subsection{Deprecated options} % % \begin{macrocode} \keys_define:nn { siunitx } { complex-symbol-angle .code:n = { \msg_info:nnnn { siunitx } { option-deprecated } { number-angle-product } { complex-phase-command } complex-phase-command = {#1} } } % \end{macrocode} % % \subsection{Standard settings for module options} % % Some of these follow naturally from the point of definition % (\foreign{e.g.}~boolean variables are always |false| to begin with), % but for clarity everything is set here. % \begin{macrocode} \keys_set:nn { siunitx } { complex-angle-unit = degrees , complex-mode = input , complex-root-position = after-number , complex-phase-command = \ensuremath { \angle } , complex-symbol-degree = \degree , input-complex-root = ij , output-complex-root = \mathrm { i } , print-complex-unity = false } % \end{macrocode} % % \begin{macrocode} %</package> % \end{macrocode} % % \end{implementation} % % \PrintIndex