%% cheat-sheet.tex %% Copyright 2021 Rebecca B. Turner. % % This work may be distributed and/or modified under the % conditions of the LaTeX Project Public License, either version 1.3 % of this license or (at your option) any later version. % The latest version of this license is in % http://www.latex-project.org/lppl.txt % and version 1.3 or later is part of all distributions of LaTeX % version 2005/12/01 or later. % % This work has the LPPL maintenance status `maintained'. % % The Current Maintainer of this work is Rebecca B. Turner. % % This work consists of the files: % README.md % rbt-mathnotes.tex % rbt-mathnotes.sty % rbt-mathnotes.cls % rbt-mathnotes-util.sty % rbt-mathnotes-messages.sty % rbt-mathnotes-hw.cls % rbt-mathnotes-formula-sheet.cls % examples/cheat-sheet.tex % examples/multivar.tex % examples/topology-hw-1.tex % and the derived files: % rbt-mathnotes.pdf % examples/cheat-sheet.pdf % examples/multivar.pdf % examples/topology-hw-1.pdf \documentclass{rbt-mathnotes-formula-sheet} \usepackage{nicefrac} \ExplSyntaxOn \NewDocumentCommand \normalized { m } { \frac { #1 } { \| #1 \| } } \let \gr \grad \def \ddx { \frac{d}{dx} } % VL = vector literal \NewDocumentCommand \vl { m } { \left\langle #1 \right\rangle } \ExplSyntaxOff \title{Formula Sheet} \author{Rebecca Turner} \date{2019-11-12} % "The most common size for index cards in North America and UK is 3 by 5 % inches (76.2 by 127.0 mm), hence the common name 3-by-5 card. Other sizes % widely available include 4 by 6 inches (101.6 by 152.4 mm), 5 by 8 inches % (127.0 by 203.2 mm) and ISO-size A7 (74 by 105 mm or 2.9 by 4.1 in)." \mathnotes{ height = 4in , width = 6in , } \begin{document} \maketitle \begin{gather*} % 12.2: Vectors % 12.3: Dot product \textstyle\vec a \cdot \vec b = \sum_i a_i b_i = |\vec a| |\vec b| \cos \theta. \\ % 12.4: Cross product \vec a \times \vec b % = \left| \begin{array}{rrr} % \hat{i} & \hat{j} & \hat{k} \\ % a_1 & a_2 & a_3 \\ % b_1 & b_2 & b_3 \\ % \end{array} \right| \\ = \langle a_2 b_3 - a_3 b_2, \quad a_3b_1 - a_1b_3, \\ a_1b_2 - a_2b_1 \rangle.\quad |\vec a \times \vec b| = |\vec a| |\vec b| \sin \theta. % 12.5: Equations of lines and planes. \shortintertext{Param.\ eqns.\ of line through $\langle x_0,y_0,z_0 \rangle$ par.\ to $\langle a,b,c \rangle$:} x = x_0 + at, \quad y = y_0 + bt, \quad z = z_0 + ct. \\ \text{Symm.\ eqns.: } \frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}. \\ \shortintertext{Vec.\ eqn.\ of plane through $\vec r$ with $\vec n$ normal:} \vec n \cdot (\vec r - \vec r_0) = 0, \quad \vec n \cdot \vec r = \vec n \cdot \vec r_0. \\ % 13.1: Vector functions % 13.2: Derivatives/integrals of vector functions % 13.3: Arc length and curvature \shortintertext{Length along a vec.\ fn.\ $\vec r(t)$:} \textstyle\int_a^b \left|\vec r'(t)\right|\,dt = \int_a^b \sqrt{\sum_i r_i'(t)^2}\,dt, \\ \shortintertext{Unit tang.\ $\vec T(t) = \vec r'(t)/\left|\vec r'(t)\right|$, so curvature of $\vec r(t)$ w/r/t the arc len.\ fn. $s$:} \kappa = \left|\frac{d\vec T}{ds}\right| = \frac{\left| \vec T'(t) \right|}{\left| \vec r'(t) \right|} = \frac{\left| \vec r'(t) \times \vec r''(t) \right|}{\left| \vec r'(t) \right|^3}. \\ \text{Unit normal:}\quad \vec N(t) = \vec T'(t)\,/\,\left| \vec T'(t) \right| \\ % 14.1: Functions of several variables % 14.2: Limits and continuity % 14.3: Partial derivatives \text{Clairaut's thm.:}\quad f_{xy}(a,b) = f_{yx}(a,b) \\ % 14.4: Tangent planes & linear approximations \shortintertext{Tan.\ plane to $z = f(x,y)$ at $\langle x_0, y_0, z_0\rangle$:} z - z_0 = f_x(x_0, y_0) (x-x_0) \\ + f_y(x_0, y_0) (y-y_0). \\ % Partial derivatives of f for each variable exist near a point and are % continuous => f is differentiable at the po\int. % 14.6: Directional derivatives and the gradient vector \text{Grad.:}\quad \grad f(x,y) = \pd[f]x \hat{i} + \pd[f]y \hat{j}. \\ \shortintertext{Dir.\ deriv.\ towards $\vec u$ at $\langle x_0, y_0 \rangle$:} D_{\langle a,b\rangle} f(x_0, y_0) = f_x(x,y) a + f_y(x,y) b \\ = \grad f(x,y) \cdot \vec u. \\ \shortintertext{Max of $D_{\vec u} f(\vec x) = \left|\grad f(\vec x)\right|$. Tan.\ plane of $f$ at $\vec p$:} 0 = f_x(\vec p)(x-\vec p_x) + f_y(\vec p)(y-\vec p_y) \\ + f_z(\vec p)(z-\vec p_z). % 14.7: Maximum and minimum values \shortintertext{If $f$ has loc.\ extrem.\ at $\vec p$, then $f_x(\vec p) = 0$ (\& $f_y$, etc). If so, let} D = \left| \begin{array}{ll} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{array}\right| = f_{xx} f_{yy} - (f_{xy})^2. \shortintertext{% $D = 0$: no information. $D < 0$: saddle pt. $D > 0$: $f_{xx}(\vec p) > 0 \implies$ loc.\ min; $f_{xx}(\vec p) < 0 \implies$ loc.\ max. ($D$ is the \textbf{Hessian mat.}) \endgraf Set of possible abs. min and max vals of $f$ in reg.\ $D$: $f$ at critical pts.\ and extreme vals.\ on the boundary of $D$. % 14.8: Lagrange multipliers \endgraf Lagrange mults.: extreme vals of $f(\vec p)$ when $g(\vec p) = k$. Find all $\vec x, \lambda$ s.t. } \grad f(\vec x) = \lambda \grad g(\vec x),\quad g(\vec x) = k. \shortintertext{i.e.\ $f_x = \lambda g_x$, etc.} % 15.1: Double integrals over rectangles % 15.2: Iterated integrals % 15.3: Double integrals over general regions \iint f(r\cos\theta, r\sin\theta)r\,dr\,d\theta. \\ A = \iint_D \left(\sqrt{f_x(x,y)^2 + f_y(x,y)^2 + 1}\right) \,dA. \\ \shortintertext{Line int.s} \int_C f(x,y)\,ds = \\ \int_a^b f(x(t), y(t))\sqrt{\left(\pd[x]t\right)^2 + \left(\pd[y]t\right)^2}\,dt \\ \shortintertext{If $C$ is a smooth curve given by $\vec r(t)$ from $a \le t \le b$,} \int_C \grad f \cdot d\vec r = f(\vec r(b)) - f(\vec r(a)) \\ \text{Spherical coords:}\quad x = \rho \sin \phi \cos \theta \\ y = \rho \sin \phi \sin \theta, z = \rho \cos \phi \\ \curl \vec F = \\ \left< \pd[R]y - \pd[Q]z, \pd[P]z - \pd[R]x, \pd[Q]x - \pd[P]y\right>. \\ \vec F = \langle P,Q,R \rangle,\quad \curl \vec F = \grad \times \vec F \\ \vec F \text{ ``conservative''} \implies \exists f, \vec F = \grad f. \\ \dive \vec F = \grad \cdot \vec F = \pd[P]x + \pd[Q]y + \pd[R]z. \\ \curl(\grad f) = \vec 0,\quad \dive \curl \vec F = 0 \\ \shortintertext{If $C$ is a positively-oriented (ccw) closed curve, $D$ is bounded by $C$, and $\vec n$ represents the normal,} % \int_C P\,dx + Q\,dy = \iint_D\left( \pd[Q]{x} - \pd[P]{y} \right). \\ \oint_C \vec F \cdot \vec n\,ds = \iint_D \dive \vec F(x,y)\,dA. \end{gather*} \pagebreak \raggedright Common derivs: $f(g(x)) \to g'(x) f'(g(x))$, $b^x \to b^x \ln b$, $f^{-1}(x) \to 1/f'(f^{-1}(x))$, $\ln x \to 1/x$, $\sin x \to \cos x$, $\cos x \to -\sin x$, $\tan x \to \sec^2 x$, $\sin^{-1} x \to 1/\sqrt{1-x^2}$, $\cos^{-1} x \to -(\sin^{-1}x)'$ (etc.), $\tan^{-1} x \to 1/(1+x^2)$, $\sec^{-1} x \to 1/(|x|\sqrt{x^2-1})$. Common ints (don't forget $+C$): \begin{gather*} x^n \to \frac{x^{n + 1}}{n + 1} + C \quad \text{when } n \ne -1 \\ 1/x \to \ln |x| \\ \tan x \to -\ln(\cos x) \\ \int uv'\,dx = uv - \int u'v\,dx \quad\text{(Int.\ by parts)} \\ \int u\,dv = uv-\int v\,du \\ \int_{g(a)}^{g(b)} f(u)\,du = \int_a^b f(g(x))g'(x)\,dx \quad\text{$u$-substitution.} \intertext{E.x.\ in $\int 2x \cos x^2\,dx$, let $u=x^2$, find $du/dx=2x \implies du = 2x\,dx$, subs.\ $\int \cos u\,du = \sin u + C = \sin x^2 + C$.} \iint_R f(x,y)\,dA = \int_\alpha^\beta \int_a^b f(r\cos\theta, r\sin\theta)r\,dr\,d\theta \end{gather*} \begin{itemize} \item Integrand contains $a^2-x^2$, let $x = a\sin\theta$ and use $1 - \sin^2 \theta = \cos^2 \theta$. \item $a^2 + x^2$, let $x = a\tan\theta$, use $1 + \tan^2 \theta = \sec^2 \theta$. \item $x^2 - a^2$, let $x = a\sec\theta$, use $\sec^2\theta - 1 = \tan^2 \theta$. \end{itemize} \begin{gather*} \lim_{x \to 0} \sin x/x = 1 \\ \lim_{x \to 0} (1-\cos x)/x = 0 \\ \lim_{x \to \infty} x \sin(1/x) = 1 \\ \lim_{x \to 0} (1+x)^{1/x} = e \\ \lim_{x \to 0} (e^{ax}-1)/(bx) = a/b \\ \lim_{x \to 0^+} x^x = 1 \\ \lim_{x \to 0^+} x^{-n} = \infty \\ \text{For $0/0$ or $\pm\infty/\infty$,}\quad \lim_{x \to c} f(x)/g(x) = \lim_{x \to c} f'(x)/g'(x) \\ \text{For $g(x)$ cont.\ at $L$,} \lim_{x \to c} f(x) = L \implies \lim_{x \to c} g(L) \end{gather*} \end{document}