%This commad provides the text in the first column of the recurences % %This command has one parameter: % 1) The width of the text \newcommand\TTwoRecurOne[1]{% \parbox[t]{#1}{% \TTwoRecurenceFontSize %This command add a small line between 2 paragraphs to %better separate different elements. \def\Filet{\par\centerline{\rule{5em}{.5pt}}\par} \deflength{\parskip}{\TTwoRecurParSkip} %We accept a unbalanced last column %\defcounter{unbalance}{2} %Width of the vertical rule to separate columns. \deflength{\columnseprule}{.4pt} \DisplaySpace{\TTwoDisplaySpace}{\TTwoDisplayShortSpace} \begin{multicols}{3} \TTwoTitle{Master method:} \AdjustSpace{-.75ex plus .25 ex minus .5ex} \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\SmallChar}{\StyleWithoutNumber} \Fm{T(n) = aT(n/b) + f(n)} \Fm{\MathRemark[\relax]{a\geq 1, b > 1}} \end{DisplayFormulae} \Filet \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\SmallChar}{\StyleWithoutNumber} \unskip If \Fm[true]{\exists\, \epsilon > 0} such that \Fm[true]{f(n) = O(n^{\log_b a - \epsilon})} then: \Fm[true]{T(n) = \Theta(n^{\log_b a})} \end{DisplayFormulae} \Filet \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\SmallChar}{\StyleWithoutNumber} \unskip If \Fm[true]{f(n) = \Theta(n^{\log_b a})} then \Fm[true]{T(n) = \Theta(n^{\log_b a} \log_2 n)} \end{DisplayFormulae} \Filet \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\SmallChar}{\StyleWithoutNumber} \unskip If \Fm[true]{\exists\, \epsilon > 0} such that \Fm[true]{f(n) = \Omega(n^{\log_b a + \epsilon})}, and \Fm[true]{\exists\, c < 1} such that \Fm[true]{a f(n/b) \leq cf(n)} for large $n$, then: \Fm[true]{T(n) = \Theta(f(n))} \end{DisplayFormulae} \TTwoTitle{Substitution \textup{(}example\textup{)}:} \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\SmallChar}{\StyleWithoutNumber} \unskip Consider the following recurrence:\\ \Fm[true]{T_{i+1} = 2^{2^i} \cdot T_i^2\MathRemark{T_1 = 2}}. Note that $T_i$ is always a power of two. \end{DisplayFormulae} \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\SmallChar}{\StyleWithoutNumber} \unskip Let \Fm[true]{t_i = \log_2 T_i}. Then we have: \Fm[true]{t_{i+1} = 2^i + 2 t_i\MathRemark{t_1 = 1}} \end{DisplayFormulae} \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\SmallChar}{\StyleWithoutNumber} \unskip Let \Fm[true]{u_i = t_i/2^i}. Dividing both sides of the previous equation by \Fm[true]{2^{i+1}} we get: \Fm[true]{\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}} \end{DisplayFormulae} \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\SmallChar}{\StyleWithoutNumber} \unskip Substituting we find:\\%[-1ex plus .5ex minus .5ex] \Fm[true]{u_{i+1} = 2^{-1} + u_i\MathRemark{u_1 = 2^{-1}}}, which is simply \Fm[true]{u_i = i/2}. So we find that \Fm[true]{T_i} has the closed form \Fm[true]{T_i = 2^{i2^{i-1}}}. \end{DisplayFormulae} \TTwoTitle{Summing factors \textup{(}example\textup{)}:} \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\BigChar}{\StyleWithoutNumber} \unskip Consider the following recurrence:\\ \Fm[true]{T(n) = 3T(n/2) + n\MathRemark{T(1) = 1}} \end{DisplayFormulae} \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\BigChar}{\StyleWithoutNumber} \unskip Rewrite so that all terms involving $T$ are on the left side:\\ \Fm[true]{T(n) - 3T(n/2) = n} Now expand the recurrence, and choose a factor which makes the left side ``telescope''. \end{DisplayFormulae} \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\BigChar}{\StyleWithoutNumber} \Fm{\left(T(n) - 3T(n/2) = n\right)} \def\FormulaRecur{\left(T(n/2) - 3T(n/4) = n/2\right)} \Fm{\FormulaRecur} %To get the size of the preceding formula \WriteFormula{0pt}{\TmpLengthA}{\FormulaRecur}{false} \Fm{\makebox[\TmpLengthA][c]{$\vdots$}} \Fm{3^{\log_2 n - 1}\left(T(2) - 3T(1) = 2\right)} \end{DisplayFormulae} \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\SmallChar}{\StyleWithoutNumber} \unskip Let \Fm[true]{m = \log_2 n}. Summing the left side we get: \def\FirstPart{T(n) - 3^mT(1)} \FmPartA{\FirstPart= T(n) - 3^m} \FmPartB{\FirstPart}{= T(n) - n^k}\\ \MathRemark[\relax]{\text{where } k = \log_2 3 \approx 1\SepDecimal 58496}. \end{DisplayFormulae} Summing the right side we get:\\ \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\BigChar}{\StyleWithoutNumber} \Fm{\sum_{i=0}^{m-1} \frac{n}{2^i} 3^i = n \sum_{i=0}^{m-1} \left(\frac{3}{2} \right)^i} \end{DisplayFormulae} \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\BigChar}{\StyleWithoutNumber} \unskip Let \Fm[true]{c = \frac{3}{2}}. Then we have: \def\FirstPart{n \sum_{i=0}^{m-1} c^i} \FmPartA{\FirstPart = n \left( \frac{c^m-1}{c-1} \right)} \FmPartB{\FirstPart}{= 2 n \left( c^{\log_2 n } - 1 \right)} \FmPartB{\FirstPart}{= 2 n \left( c^{(k-1) \log_c n } - 1 \right)} \FmPartB{\FirstPart}{= 2 n^k - 2n} and so \Fm[true]{T(n) = 3 n^k - 2n}. \end{DisplayFormulae} Full history recurrences can often be changed to limited history ones. \TTwoTitle{Example:} \AdjustSpace{-1.5ex plus .5ex minus .5ex} \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\BigChar}{\StyleWithoutNumber} \unskip Consider: \Fm{T_i = 1 + \sum^{i-1}_{j=0} T_j\MathRemark{T_0 = 1}}\\ Note that: \Fm{T_{i+1} = 1 + \sum^i_{j=0} T_j}\\ By subtracting we find: \def\FirstPart{T_{i+1} - T_i} \FmPartA{\FirstPart = 1 + \sum^i_{j=0} T_j - 1 - \sum^{i-1}_{j=0} T_j} \FmPartB{\FirstPart}{= T_i}\\ And so \Fm[true]{T_{i+1} = 2T_i = 2^{i+1}}. \end{DisplayFormulae} \TTwoTitle{Generating functions:} \begin{enumerate}[noitemsep,nolistsep] \item Multiply both sides of the equation by $x^i$. \item Sum both sides over all $i$ for which the equation is valid. \item Choose a generating function $G(x)$. Usually $G(x) = \sum_{i=0}^\infty x^i g_i$. \item Rewrite the equation in terms of the generating function $G(x)$. \item Solve for $G(x)$. \item The coefficient of $x^i$ in $G(x)$ is $g_i$. \end{enumerate} \TTwoTitle{Example:} \begin{DisplayFormulae}{1}{0pt}{2ex plus 1ex minus 1ex}{\BigChar}{\StyleWithoutNumber} \unskip Let the equation: \\ \Fm{g_{i+1} = 2 g_i + 1\MathRemark{g_0 = 0}}.\\[.6ex plus .2ex minus .1ex] Multiply and sum: \Fm{\sum_{i\geq 0} g_{i+1} x^i = \sum_{i\geq 0} 2 g_i x^i + \sum_{i\geq 0} x^i} We choose: \Fm[true]{G(x) = \sum_{i\geq 0} x^i g_i}.\\ Rewrite in terms of \Fm[true]{G(x)}: \Fm{\frac{G(x)-g_0}{x} = 2 G(x) + \sum_{i\geq 0} x^i}\\ Simplify: \Fm{\frac{G(x)}{x} = 2 G(x) + \frac{1}{1-x}}\\ Solve for \Fm[true]{G(x)}: \Fm{G(x) = \frac{x}{(1-x)(1-2x)}}.\\ Expand this using partial fractions: \def\FirstPart{G(x)} \FmPartA{\FirstPart = x \left(\frac{2}{1-2x} - \frac{1}{1-x}\right)} \FmPartB{\FirstPart}{= x \left(2 \sum_{i\geq 0} 2^i x^i - \sum_{i\geq 0} x^i\right)} \FmPartB{\FirstPart}{= \sum_{i\geq 0} (2^{i+1} - 1) x^{i+1}}\\ So \Fm[true]{g_i = 2^i - 1}. \end{DisplayFormulae} \end{multicols} }% }