%This command provides the math for the second horizontal area %of the first column of the page 6 % %The command has one parameter % 1) The width of the math text \newcommand\TSixPartialFrac[1]{% \parbox[t]{#1}{% \TSixPartialFontSize \DisplaySpace{\TSixDisplaySpace}{\TSixDisplayShortSpace} %Since the columns is narrow, ragged right looks better \raggedright Let $N(x)$ and $D(x)$ be polynomial functions of $x$. We can break down $N(x)/D(x)$ using partial fraction expansion. First, if the degree of $N$ is greater than or equal to the degree of $D$, divide $N$ by $D$, obtaining \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus .5ex}{\SmallChar}{\StyleWithoutNumber} \Fm{\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)}} \end{DisplayFormulae} where the degree of $N'$ is less than that of $D$. \TSixTitle{Second, factor $D(x)$} Use the following rules: \mbox{For a non-repeated factor:} \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus .5ex}{\SmallChar}{\StyleWithoutNumber} \Fm{\frac{N(x)}{(x-a) D(x)} = \frac{A}{x-a} + \frac{N'(x)}{D(x)}} where \Fm{A = \left[\frac{N(x)}{D(x)}\right]_{x=a}} \end{DisplayFormulae} \mbox{For a repeated factor:} \begin{DisplayFormulae}{1}{0pt}{3ex plus 1ex minus .5ex}{\SmallChar}{\StyleWithoutNumber} \Fm{\frac{N(x)}{(x-a)^m D(x)} =\sum_{k=0}^{m-1}\frac{A_k}{(x-a)^{m-k}} + \frac{N'(x)}{D(x)}} where \Fm{A_k = \frac{1}{k!}\left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)}\right)\right]_{x=a}} \end{DisplayFormulae} } }